金融衍生品數學模型(第2版) [Mathematical Models of Financial Derivatives Second Edition] epub pdf  mobi txt 電子書 下載

金融衍生品數學模型(第2版) [Mathematical Models of Financial Derivatives Second Edition] epub pdf mobi txt 電子書 下載 2024

金融衍生品數學模型(第2版) [Mathematical Models of Financial Derivatives Second Edition] epub pdf mobi txt 電子書 下載 2024


簡體網頁||繁體網頁
郭宇權 著

下載链接在页面底部


點擊這裡下載
    


想要找書就要到 靜思書屋
立刻按 ctrl+D收藏本頁
你會得到大驚喜!!

發表於2024-11-10

商品介绍



齣版社: 世界圖書齣版公司
ISBN:9787510005503
版次:1
商品編碼:10104519
包裝:平裝
外文名稱:Mathematical Models of Financial Derivatives Second Edition
開本:24開
齣版時間:2010-04-01
用紙:膠版紙
頁數:530
正文語種:英語

金融衍生品數學模型(第2版) [Mathematical Models of Financial Derivatives Second Edition] epub pdf mobi txt 電子書 下載 2024



类似图書 點擊查看全場最低價

相关書籍





書籍描述

內容簡介

《金融衍生品數學模型(第2版)》旨在運用金融工程方法講述模型衍生品背後的理論,作為重點介紹瞭對大多數衍生證券很常用的鞅定價原理。書中還分析瞭固定收入市場中的大量金融衍生品,強調瞭定價、對衝及其風險策略。《金融衍生品數學模型(第2版)》從著名的期權定價模型的Black-Scholes-Merton公式開始,講述衍生品定價模型和利率模型中的最新進展,解決各種形式衍生品定價問題的解析技巧和數值方法。目次:衍生品工具介紹;金融經濟和隨機計算;期權定價模型;路徑依賴期權;美國期權;定價期權的數值方案;利率模型和債券計價;利率衍生品:債券期權、LIBOR和交換産品。

內頁插圖

目錄

Preface
1 Introduction to Derivative Instruments
1.1 Financial Options and Their Trading Strategies
1.1.1 Trading Strategies Involving Options
1.2 Rational Boundaries for Option Values
1.2.1 Effects of Dividend Payments
1.2.2 Put-Call Parity Relations
1.2.3 Foreign Currency Options
1.3 Forward and Futures Contracts
1.3.1 Values and Prices of Forward Contracts
1.3.2 Relation between Forward and Futures Prices
1.4 Swap Contracts
1.4.1 Interest Rate Swaps
1.4.2 Currency Swaps
1.5 Problems

2 Financial Economics and Stochastic Calculus
2.1 Single Period Securities Models
2.1.1 Dominant Trading Strategies and Linear Pricing Measures
2.1.2 Arbitrage Opportunities and Risk Neutral Probability Measures
2.1.3 Valuation of Contingent Claims
2.1.4 Principles of Binomial Option Pricing Model
2.2 Filtrations, Martingales and Multiperiod Models
2.2.1 Information Structures and Filtrations
2.2.2 Conditional Expectations and Martingales
2.2.3 Stopping Times and Stopped Processes
2.2.4 Multiperiod Securities Models
2.2.5 Multiperiod Binomial Models
2.3 Asset Price Dynamics and Stochastic Processes
2.3.1 Random Walk Models
2.3.2 Brownian Processes
2.4 Stochastic Calculus: Itos Lemma and Girsanovs Theorem
2.4.1 Stochastic Integrals
2.4.2 Itos Lemma and Stochastic Differentials
2.4.3 Itos Processes and Feynman-Kac Representation Formula
2.4.4 Change of Measure: Radon-Nikodym Derivative and Girsanovs Theorem.
2.5 Problems

3 Option Pricing Models: Blaek-Scholes-Merton Formulation
3.1 Black-Scholes-Merton Formulation
3.1.1 Riskless Hedging Principle
3.1.2 Dynamic Replication Strategy
3.1.3 Risk Neutrality Argument
3.2 Martingale Pricing Theory
3.2.1 Equivalent Martingale Measure and Risk Neutral Valuation
3.2.2 Black-Scholes Model Revisited
3.3 Black-Scholes Pricing Formulas and Their Properties
3.3.1 Pricing Formulas for European Options
3.3.2 Comparative Statics
3.4 Extended Option Pricing Models
3.4.1 Options on a Dividend-Paying Asset
3.4.2 Futures Options
3.4.3 Chooser Options
3.4.4 Compound Options
3.4.5 Mertons Model of Risky Debts
3.4.6 Exchange Options
3.4.7 Equity Options with Exchange Rate Risk Exposure
3.5 Beyond the Black-Scholes Pricing Framework
3.5.1 Transaction Costs Models
3.5.2 Jump-Diffusion Models
3.5.3 Implied and Local Volatilities
3.5.4 Stochastic Volatility Models
3.6 Problems

4 Path Dependent Options
4.1 Barrier Options
4.1.1 European Down-and-Out Call Options
4.1.2 Transition Density Function and First Passage Time Density
4.1.3 Options with Double Barriers
4.1.4 Discretely Monitored Barrier Options
4.2 Lookback Options
4.2.1 European Fixed Strike Lookback Options
4.2.2 European Floating Strike Lookback Options
4.2.3 More Exotic Forms of European Lookback Options
4.2.4 Differential Equation Formulation
4.2.5 Discretely Monitored Lookback Options
4.3 Asian Options.
4.3.1 Partial Differential Equation Formulation
4.3.2 Continuously Monitored Geometric Averaging Options
4.3.3 Continuously Monitored Arithmetic Averaging Options
4.3.4 Put-Call Parity and Fixed-Floating Symmetry Relations
4.3.5 Fixed Strike Options with Discrete Geometric Averaging
4.3.6 Fixed Strike Options with Discrete Arithmetic Averaging
4.4 Problems

5 American Options
5.1 Characterization of the Optimal Exercise Boundaries
5.1.1 American Options on an Asset Paying Dividend Yield
5.1.2 Smooth Pasting Condition.
5.1.3 Optimal Exercise Boundary for an American Call
5.1.4 Put-Call Symmetry Relations.
5.1.5 American Call Options on an Asset Paying Single Dividend
5.1.6 One-Dividend and Multidividend American Put Options
5.2 Pricing Formulations of American Option Pricing Models
5.2.1 Linear Complementarity Formulation
5.2.2 Optimal Stopping Problem
5.2.3 Integral Representation of the Early Exercise Premium
5.2.4 American Barrier Options
5.2.5 American Lookback Options
5.3 Analytic Approximation Methods
5.3.1 Compound Option Approximation Method
5.3.2 Numerical Solution of the Integral Equation
5.3.3 Quadratic Approximation Method
5.4 Options with Voluntary Reset Rights
5.4.1 Valuation of the Shout Floor
5.4.2 Reset-Strike Put Options
5.5 Problems

6 Numerical Schemes for Pricing Options
6.1 Lattice Tree Methods
6.1.1 Binomial Model Revisited
6.1.2 Continuous Limits of the Binomial Model
6.1.3 Discrete Dividend Models
6.1.4 Early Exercise Feature and Callable Feature
6.1.5 Trinomial Schemes
6.1.6 Forward Shooting Grid Methods
6.2 Finite Difference Algorithms
6.2.1 Construction of Explicit Schemes
6.2.2 Implicit Schemes and Their Implementation Issues
6.2.3 Front Fixing Method and Point Relaxation Technique
6.2.4 Truncation Errors and Order of Convergence
6.2.5 Numerical Stability and Oscillation Phenomena
6.2.6 Numerical Approximation of Auxiliary Conditions
6.3 Monte Carlo Simulation
6.3.1 Variance Reduction Techniques
6.3.2 Low Discrepancy Sequences
6.3.3 Valuation of American Options
6.4 Problems

7 Interest Rate Models and Bond Pricing
7.1 Bond Prices and Interest Rates
7.1.1 Bond Prices and Yield Curves
7.1.2 Forward Rate Agreement, Bond Forward and Vanilla Swap
7.1.3 Forward Rates and Short Rates
7.1.4 Bond Prices under Deterministic Interest Rates
7.2 One-Factor Short Rate Models
7.2.1 Short Rate Models and Bond Prices
7.2.2 Vasicek Mean Reversion Model
7.2.3 Cox-Ingersoll-Ross Square Root Diffusion Model
7.2.4 Generalized One-Factor Short Rate Models
7.2.5 Calibration to Current Term Structures of Bond Prices
7.3 Multifactor Interest Rate Models
7.3.1 Short Rate/Long Rate Models
7.3.2 Stochastic Volatility Models
7.3.3 Affine Term Structure Models
7.4 Heath-Jarrow-Morton Framework
7.4.1 Forward Rate Drift Condition
7.4.2 Short Rate Processes and Theft Markovian Characterization
7.4.3 Forward LIBOR Processes under Ganssian HIM Framework
7.5 Problems

8 Interest Rate Derivatives: Bond Options, LIBOR and Swap Products
8.1 Forward Measure and Dynamics of Forward Prices
8.1.1 Forward Measure
8.1.2 Pricing of Equity Options under Stochastic Interest Rates
8.1.3 Futures Process and Futures-Forward Price Spreadi
8.2 Bond Options and Range Notes
8.2.1 Options on Discount Bonds and Coupon-Bearing Bonds
8.2.2 Range Notes
8.3 Caps and LIBOR Market Models
8.3.1 Pricing of Caps under Gaussian HJM Framework
8.3.2 Black Formulas and LIBOR Market Models
8.4 Swap Products and Swaptions
8.4.1Forward Swap Rates and Swap Measure
8.4.2 Approximate Pricing of Swaption under Lognormal LIBOR Market Model
8.4.3 Cross-Currency Swaps
8.5 Problems
References
Author Index
Subject Index

前言/序言

  In the past three decades, we have witnessed the phenomenal growth in the trading of financial derivatives and structured products in the financial markets around the globe and the surge in research on derivative pricing theory,cading financial institutions are hiring graduates with a science background who can use advanced analyrical and numerical techniques to price financial derivatives and manage portfolio risks, a phenomenon coined as Rocket Science on Wall Street. There are now more than a hundred Master level degreed programs in Financial Engineering/Quantitative Finance/Computational Finance in different continents. This book is written as an introductory textbook on derivative pricing theory for students enrolled in these degree programs. Another audience of the book may include practitioners in quantitative teams in financial institutions who would like to acquire the knowledge of option pricing techniques and explore the new development in pricing models of exotic structured derivatives. The level of mathematics in this book is tailored to readers with preparation at the advanced undergraduate level of science and engineering majors, in particular, basic proficiencies in probability and statistics, differential equations, numerical methods, and mathematical analysis. Advance knowledge in stochastic processes that are relevant to the martingale pricing theory, like stochastic differential calculus and theory of martingale, are

金融衍生品數學模型(第2版) [Mathematical Models of Financial Derivatives Second Edition] epub pdf mobi txt 電子書 下載 2024

金融衍生品數學模型(第2版) [Mathematical Models of Financial Derivatives Second Edition] 下載 epub mobi pdf txt 電子書

金融衍生品數學模型(第2版) [Mathematical Models of Financial Derivatives Second Edition] pdf 下載 mobi 下載 pub 下載 txt 電子書 下載 2024

金融衍生品數學模型(第2版) [Mathematical Models of Financial Derivatives Second Edition] mobi pdf epub txt 電子書 下載 2024

金融衍生品數學模型(第2版) [Mathematical Models of Financial Derivatives Second Edition] epub pdf mobi txt 電子書 下載
想要找書就要到 靜思書屋
立刻按 ctrl+D收藏本頁
你會得到大驚喜!!

讀者評價

評分

即閤約交易的雙方(在標準化閤約中由於可以交易是不確定的)盈虧完全負相關,並且淨損益為零,因此稱"零和"。

評分

金融衍生産品(derivatives)是指其價值依賴於基礎資産(underlyings)價值變動的閤約(contracts)。這種閤約可以是標準化的,也可以是非標準化的。標準化閤約是指其標的物(基礎資産)的交易價格、交易時間、資産特徵、交易方式等都是事先標準化的,因此此類閤約大多在交易所上市交易,如期貨。非標準化閤約是指以上各項由交易的雙方自行約定,因此具[1]有很強的靈活性,比如遠期協議。

評分

非常好的書,買迴來學習用。微觀經濟(Microeconomics)(“微觀”是希臘文“ μικρο ”的意譯,原意是“小")又稱個體經濟學,小經濟學,是現代經濟學的一個分支,主要以單個經濟單位(單個生産者、單個消費者、單個市場經濟活動)作為研究對象分析的一門學科。 微觀經濟學是研究社會中單個經濟單位的經濟行為,以及相應的經濟變量的單項數值如何決定的經濟學說。亦稱市場經濟學或價格理論。微觀經濟學(Microeconomics)又稱個體經濟學,小經濟學,是現代經濟學的一個分支,主要以單個經濟單位(單個生産者、單個消費者、單個市場經濟活動)作為研究對象,分析單個生産者如何將有限資源分配在各種商品的生産上以取得最大利潤;單個消費者如何將有限收入分配在各種商品消費上以獲得最大滿足;單個生産者的産量、成本、使用的生産要素數量和利潤如何確定;生産要素供應者的收入如何決定;單個商品的效用、供給量、需求量和價格如何確定等等。微觀經濟學是研究社會中單個經濟單位的經濟行為,以及相應的經濟變量的單項數值如何決定的經濟學說;分析個體經濟單位的經濟行為,在此基礎上,研究現代西方經濟社會的市場機製運行及其在經濟資源配置中的作用,並提齣微觀經濟政策以糾正市場失靈;關心社會中的個人和各組織之間的交換過程,它研究的基本問題是資源配置的決定,其基本理論就是通過供求來決定相對價格的理論。所以微觀經濟學的主要範圍包括消費者選擇,廠商供給和收入分配。亦稱市場經濟學或價格理論。微觀經濟學的中心理論是價格理論。中心思想是,自由交換往往使資源得到最充分的利用,在這種情況下,資源配置被認為是帕纍托有效的。微觀經濟學包括的內容相當廣泛,其中主要有:均衡價格理論、消費者行為理論、生産者行為理論(包括生産理論、成本理論和市場均衡理論)、分配理論、一般均衡理論與福利經濟學、市場失靈與微觀經濟政策。微觀經濟學的研究方嚮微觀經濟學研究市場中個體的經濟行為,亦即單個傢庭、單個廠商和單個市場的經濟行為以及相應的經濟變量。它從資源稀缺這個基本概念齣發,認為所有個體的行為準則在此設法利用有限資源取得最大收獲,並由此來考察個體取得最大收獲的條件。在商品與勞務市場上,作為消費者的傢庭根據各種商品的不同價格進行選擇,設法用有限的收入從所購買的各種商品量中獲得最大的效用或滿足。傢庭選擇商品的行動必然會影響商品的價格,市場價格的變動又是廠商確定生産何種商品的信號。廠商是各種商品及勞務的供給者,廠商的目的則在於如何用最小的生産成本,生産齣最大的産品量,獲得取最大限度的利潤。廠商的抉擇又將影響到生産要素市場上的各項價格,從而影響到傢庭的收入。傢庭和廠商的抉擇均通過市場上的 供求關係錶現齣來,通過價格變動進行協調。因此,微觀經濟學的任務就是研究市場機製及其作用,均衡價格的決定,考察市場機製如何 通過調節個體行為取得資源最優配置的條件與途徑。微觀經濟學也就是關於市場機製的經濟學,它以價格為分析的中心,因此也稱作價格理論。微觀經濟學還考察瞭市場機製失靈時,政府如何采取乾預行為與措施的理論基礎。微觀經濟學是馬歇爾的均衡價格理論基礎上,吸收美國經濟學傢張伯侖和英國經濟學傢羅賓遜的壟斷競爭理論以及其他理論後逐步建立起來的。凱恩斯主義的宏觀經濟學盛 行之後,這種著重研究個體經濟行為的傳統理論,就被稱為微觀經濟學。微觀經濟學與宏觀經濟學隻是研究 對象有所分工,兩者的立場、觀點和方法並無根本分 歧。兩者均使用均衡分析與邊際分析,在理論體係上,它們相互補充和相互 依存,共同構成現代西方經濟學的理論體係。微觀經濟學的基本假設:市場齣清,即資源流動沒有任何障礙;完全理性,即消費者與廠商都是以利己為目的的經濟人,他們自覺的按利益最大化的原則行事,既能把最大化作為目標,又知道如何實現最大化;完全信息,是指消費者和廠商可以免費而迅速的獲得各種市場信息。

評分

4、不確定性或高風險性

評分

(1)根據産品形態,可以分為遠期、期貨、期權和互換四大類。

評分

金融衍生産品具有以下幾個特點:

評分

2、跨期性

評分

評分

太給力瞭 夢寐以求的一本書 終於得償所願

金融衍生品數學模型(第2版) [Mathematical Models of Financial Derivatives Second Edition] epub pdf mobi txt 電子書 下載 2024

类似图書 點擊查看全場最低價

金融衍生品數學模型(第2版) [Mathematical Models of Financial Derivatives Second Edition] epub pdf mobi txt 電子書 下載 2024


分享鏈接





相关書籍


本站所有內容均為互聯網搜索引擎提供的公開搜索信息,本站不存儲任何數據與內容,任何內容與數據均與本站無關,如有需要請聯繫相關搜索引擎包括但不限於百度google,bing,sogou

友情鏈接

© 2024 book.idnshop.cc All Rights Reserved. 靜思書屋 版权所有