《經麯原版書庫·數據挖掘:概念與技術(英文版·第3版)》特點:引入瞭許多算法和實現示例,全部以易於理解的僞代碼編寫,適用於實際的大規模數據挖掘項目。討論瞭一些高級主題,例如挖掘麵嚮對象的關係型數據庫、空間數據庫、多媒體數據庫、時間序列數據庫、文本數據庫、萬維網以及其他領域的應用等。全麵而實用地給齣用於從海量數據中獲取盡可能多信息的概念和技術。
Foreword to Second Edition
Preface
Acknowledgments
About the Authors
Chapter1 Introduction
Why Data Mining?
Moving toward the Information Age
Data Mining as the Evolution of Information Technology
What Is Data Mining?
What Kinds of Data Can Be Mined?
Database Data
Data Warehouses
Transactional Data
Other Kinds of Data
What Kinds of Patterns Can Be Mined?
Class/Concept Description: Characterization and Discrimination
Mining Frequent Patterns, Associations, and Correlations
Classification and Regression for Predictive Analysis
Cluster Analysis
Outlier Analysis
Are All Patterns Interesting?
Which Technologies Are Used?
Statistics
Machine Learning
Database Systems and Data Warehouses
Information Retrieval
Which Kinds of Applications Are Targeted?
Business Intelligence
Web Search Engines
Major Issues in Data Mining
Mining Methodology
User Interaction
Efificiency and Scalability
Diversity of Database Types
Data Mining and Society
Summary
Exercises
Bibliographic Notes
Chapter 2 Getting to Know Your Data
Data Objects and Attribute Types
What Is an Attribute?
Nominal Attributes
Binary Attributes
Ordinal Attributes
Numeric Attributes
Discrete versus Continuous Attributes
Basic Statistical Descriptions of Data
Measuring the Central Tendency: Mean, Median, and Mode
Measuring the Dispersion of Data: Range, Quartiles, Variance,
Standard Deviation, and Interquartile Range
Graphic Displays of Basic Statistical Descriptions of Data
Data Visualization
PixeI-Oriented Visualization Techniques
Geometric Projection Visualization Techniques
Icon-Based Visualization Techniques
Hierarchical Visualization Techniques
Visualizing Complex Data and Relations
Measuring Data Similarity and Dissimilarity
Data Matrix versus Dissimilarity Matrix
Proximity Measures for Nominal Attributes
Proximity Measures for Binary Attributes
Dissimilarity of Numeric Data: Minkowski Distance
Proximity Measures for Ordinal Attributes
Dissimilarity for Attributes of Mixed Types
Cosine Similarity
Summary
Exercises
Bibliographic Notes
……
Chapter 3 Data Preprocessing
Chapter 4 Data Warehousing and Online Analytical Processin
Chapter 5 Data Cube Technology
Chapter 6 Mining Frequent Patterns, Associations, and Correlations: Basic Concepts and Methods
Chapter 7 Advanced Pattern Mining
Chapter 8 Classification: Basic Concepts
Chapter 9 Classification: Advanced Methods
Chapter 10 Cluster Analysis: Basic Concepts and I~ethods
Chapter 11 Advanced Cluster Analysis
Chapter 12 Outlier Detection
Chapter 13 Data Mining Trends and Research Frontiers
Bibliography
Index
經典數據挖掘教材之一,主流熱門的技術性書籍,影印版的值得一讀
評分很棒 紙質印刷都很好 正版
評分原版的書讀起來更有學習的價值
評分給公司買的書,用來建立公司的小圖書館。
評分快遞快,送貨師傅很好。專業必備書哦。
評分很經典的教材書,值得買
評分非常經典的一本書,學數據挖掘必備!
評分這本書內容非常的詳細,我特彆喜歡這個書 買英文的纔劃算
評分這本書內容非常的詳細,我特彆喜歡這個書 買英文的纔劃算
本站所有内容均为互联网搜索引擎提供的公开搜索信息,本站不存储任何数据与内容,任何内容与数据均与本站无关,如有需要请联系相关搜索引擎包括但不限于百度,google,bing,sogou 等
© 2025 book.tinynews.org All Rights Reserved. 静思书屋 版权所有