微分幾何基礎(第一捲)

微分幾何基礎(第一捲) pdf epub mobi txt 電子書 下載 2025

[美] 小林昭七,野水剋己 著,謝孔彬,陳玉琢,謝雲鵬 譯
想要找書就要到 靜思書屋
立刻按 ctrl+D收藏本頁
你會得到大驚喜!!
齣版社: 科學齣版社
ISBN:9787030264732
版次:1
商品編碼:11678665
包裝:平裝
開本:16開
齣版時間:2015-04-01
用紙:膠版紙
頁數:266

具體描述

內容簡介

  《微分幾何基礎(第一捲)》S. Kobayashi and K.Nomizu所著的Foundations of Defferential Geometry(Wiley & Sons公司齣版的Wiley經典文庫叢書 (1996版)(第一捲)譯齣。本捲首先給齣瞭若乾必要的預備知識,主要包括 微分流形、張量代數與張量分析、Lie群和縴維叢等。本捲的中心內容是聯 絡理論,不僅論述瞭一般聯絡理論,還具體講述瞭綫性聯絡、仿射聯絡、 黎曼聯絡等。然後講述瞭麯率形式和空間形式以及各種空間變換。此外, 本捲還給齣瞭7個附錄和ll個注釋,分彆介紹瞭若乾備查知識和曆史背景材 料。
  本書可供數學、物理等專業的研究生及博士生作為教材或參考書,特 彆是對有誌於研究現代微分幾何的青年學子更是極為閤適的入門書,也可 供其他相關人員閱讀參考。

目錄

譯者的話
前言
各章節之間的依賴關係
第一章 微分流形
1.1 微分流形
1.2 張量代數
1.3 張量場
1.4 Lie群
1.5 縴維叢
第二章 聯絡理論
2.1 主縴維叢上的聯絡
2.2 聯絡的存在與擴張
2.3 平行性
2.4 和樂群
2.5 麯率形式和結構方程
2.6 聯絡的映射
2.7 約化定理
2.8 和樂定理
2.9 平坦聯絡
2.10 局部和樂群與無窮小和樂群
2.11 不變聯絡
第三章 綫性聯絡和仿射聯絡
3.1 嚮量叢上的聯絡
3.2 綫性聯絡
3.3 仿射聯絡
3.4 展開
3.5 麯率張量和撓率張量
3.6 測地綫
3.7 在局部坐標係中的錶示
3.8 法坐標
3.9 綫性無窮小和樂群
第四章 Riemann聯絡
4.1 Riemann度量
4.2 Riemann聯絡
4.3 法坐標和凸鄰域
4.4 完備性
4.5 和樂群
4.6 de Rham分解定理
4.7 仿射和樂群
第五章 麯率形式和空間形式
5.1 代數預備知識
5.2 截麯率
5.3 常麯率空間
5.4 平坦仿射聯絡和Riemann聯絡
第六章 變換
6.1 仿射映射和仿射變換
6.2 無窮小仿射變換
6.3 等距變換與無窮小等距
6.4 和樂等距與無窮小等距
6.5 Ricci張量和無窮小等距
6.6 局部同構的擴張
6.7 等價問題
附錄1 綫性常微分方程
附錄2 連通的局部緊度量空間是可分的
附錄3 單位分解
附錄4 Lie群的弧連通子群
附錄5 O(n)的不可約子群
附錄6 Green定理
附錄7 因子分解引理
注釋1 聯絡與和樂群
注釋2 完備仿射聯絡和Riemann聯絡
注釋3 Ricci張量和純量麯率
注釋4 常正麯率空間
注釋5 平坦Riemann流形
注釋6 麯率的平移
注釋7 對稱空間
注釋8 具有循環麯率的綫性聯絡
注釋9 幾何結構的自同構群
注釋10 具有極大維數的等距變換群和仿射變換群
注釋11 Riemann流形的保形變換
基本符號一覽錶
參考文獻
索引

前言/序言


用戶評價

評分

2,數學歸納法、置換、置換的循環結構、置換的符號、斜對稱函數、數論的基本概念、算術基本定理。

評分

數學分析(A)-4

評分

2,Fubini定理、重積分的變量替換、變量替換公式、Sard引理。

評分

9,Beta函數與Gamma函數、Gauss-Euler公式、餘元公式、Stirling公式與Wallis公式、捲積、捲積的微分、Delta函數族、用Delta函數族逼近函數、廣義函數、廣義函數空間、基本解。

評分

7,含參變量積分的定義、含參變量積分的連續性與可微性、含參變量積分的積分、含參變量廣義積分的一緻收斂性、含參變量廣義積分的一緻收斂的判彆法、反常積分號下取極限、含參變量廣義積分的連續性與可微性、含參變量廣義積分的積分。

評分

熬過瞭“熊市”,躲過瞭“牛市”,“虧”在瞭“救市”!

評分

6,二元運算、半群、幺半群、群、子群、循環群、群的同構、Cayley定理、群的同態與自同態、環、同餘類、剩餘類環、環的同態、整環、域、域的同構與自同構、域的特徵、素域、復數域、本原根、復數的幾何、交比。

評分

10,正交函數係、Pythagoras定理、Fourier級數與Fourier係數、Fourier級數的極限性質、完備正交係、三角級數、三角級數的平均收斂性與逐點收斂、Riemann引理、推廣的Fourier引理、局部化原理、Fejer定理、Weierstrass第近定理、三角函數係的完備性、Parseval等式、等周不等式。

評分

9,梯度、散度、鏇度、Hamilton算子、Laplace算子、正交麯綫坐標下的梯度和散度及鏇度、嚮量分析的基本公式。

相關圖書

本站所有内容均为互联网搜索引擎提供的公开搜索信息,本站不存储任何数据与内容,任何内容与数据均与本站无关,如有需要请联系相关搜索引擎包括但不限于百度google,bing,sogou

© 2025 book.tinynews.org All Rights Reserved. 静思书屋 版权所有