內容簡介
《光泵浦外腔麵發射激光器-理論、實驗及應用》的理論部分主要介紹與外腔麵發射激光器VECSEL密切相關的半導體激光器增益理論、麵發射激光器有源區的量子設計、麵發射譜的模擬、麵內放大自發輻射和熱效應的數值分析等理論知識及研究成果。實驗部分闡述高功率、倍頻、鎖模、可調諧、單頻、擴展波段以及其它特殊形式的VECSEL實驗和最新研究報道。在應用部分重點介紹VECSEL在激光顯示、激光光譜學、太赫茲波産生、激光空間通信和生命科學等領域的應用。
目錄
第1章簡介1
1.1半導體激光器1
1.2麵發射激光器6
1.3光泵浦外腔麵發射激光器9
參考文獻13
第2章增益理論15
2.1能帶結構15
2.2增益特性33
參考文獻42
第3章有源區的量子設計44
3.1單量子阱44
3.2雙量子阱48
3.3三量子阱50
參考文獻53
第4章麵發射譜的模擬54
4.1邊發射譜54
4.2縱嚮限製因子�鰾い�55
4.3麵發射譜及其模擬57
參考文獻60
第5章麵內放大自發輻射61
5.1VECSEL中ASE的形成機製62
5.2麵內ASE譜64
5.3影響因素65
參考文獻69
第6章熱效應的數值分析71
6.1穩態熱效應71
6.2瞬態熱效應82
參考文獻91
第7章高功率VECSEL94
7.1VECSEL的輸齣功率95
7.2基質刻蝕型VECSEL98
7.3使用散熱窗口片VECSEL109
7.4采用多增益芯片結構的VECSEL124
7.5大泵浦光斑VECSEL129
7.6脈衝泵浦VECSEL132
7.7量子阱阱內泵浦VECSEL137
參考文獻145
第8章倍頻VECSEL148
8.1角度相位匹配148
8.2倍頻晶體150
8.3倍頻腔型152
8.4倍頻實驗154
8.5倍頻VECSEL研究概況158
參考文獻172
第9章鎖模VECSEL175
9.1SESAM被動鎖模176
9.2SESAM鎖模VECSEL實驗185
9.3鎖模VECSEL研究綜述193
參考文獻212
第10章可調諧VECSEL215
10.1調諧元件215
10.2可調諧VECSEL實驗220
10.3可調諧VECSEL研究一覽224
參考文獻244
第11章單頻VECSEL245
11.1綫寬控製245
11.2單頻VECSEL研究進展246
參考文獻259
第12章擴展波段VECSEL261
12.1近紅外波段261
12.2可見光波段267
12.3紫外波段276
12.4中紅外波段280
參考文獻292
第13章其他特殊VECSEL295
13.1量子點VECSEL295
13.2雙波長VECSEL308
13.3和頻及差頻VECSEL320
13.4腔內參量振蕩VECSEL327
參考文獻332
第14章VECSEL的應用335
14.1激光顯示335
14.2激光光譜學337
14.3太赫茲波産生340
14.4自由空間光通信343
14.5科研領域的應用345
14.6生命科學領域的應用360
14.7其他應用367
參考文獻373
精彩書摘
第1章簡介
1.1半導體激光器
1.1.1激光的問世
激光(light amplification by stimulated emission of radiation,laser)與原子能、計算機、半導體並稱為20世紀四大發明,其理論基礎需要追溯到1900年普朗剋(M.Planck)提齣的量子假說。1905年,愛因斯坦(A.Einstein)在普朗剋量子假說的基礎上提齣光子說,很好地解釋瞭光電效應現象。1917年,愛因斯坦進一步提齣光與物質相互作用理論,建立瞭受激輻射等基本概念,預測到光可以産生受激輻射放大。
1924年,托爾曼(R.C.Tolman)指齣,産生粒子數反轉的介質具有光學增益,這也是産生激光的基本條件之一。1953年,普羅科洛夫(A.M.Prokhorov)和湯斯(C.H.Townes)在微波段實現瞭受激輻射放大,分彆獨立報道瞭第一個微波受激輻射放大器(microwave amplification by stimulated emission of radiationmaser,MASER)。
把受激輻射放大從微波段推進到光頻段的工作並不容易,因為要在光頻段製作齣與微波段類似的波長可比擬的封閉式諧振腔在當時幾乎是不可能的。1958年,湯斯和肖洛(A.L.Schawlow)拋棄瞭尺度必須和波長可比擬的封閉式諧振腔的舊思路,提齣利用尺度遠大於波長的開放式光諧振腔實現光頻段受激輻射放大的想法。這期間,布隆伯根(N.Bloembergen)提齣利用光泵浦三能級原子係統原子數反轉分布來實現受激輻射光放大的構思。
1960年5月15日,美國休斯公司實驗室的梅曼(T.H.Maiman)利用紅寶石棒首次觀察到激光。梅曼在7月7日正式演示瞭世界第一颱紅寶石固態激光器:利用一個高強度閃光燈管來激發紅寶石棒,在端麵鍍上反光鏡的紅寶石的其中一個端麵鑽一個孔,使激光可以從這個孔輸齣。當年8月16日,他在�鱊ature�齜⒈砹艘桓黽蚨痰目轂ǎ�後來被湯斯評論為:梅曼的論文是如此之短而又産生瞭如此眾多的巨大影響,以緻我相信它是上個世紀�鱊ature�齜⒈淼娜魏尉�彩論文中單個文字最重要的論文。
激光被稱為最快的刀、最準的尺、最亮的光,它是在有理論準備和生産實踐迫切需要的背景下應運而生的,一經問世,就獲得瞭異乎尋常的飛速發展。激光的發展使古老的光學科學和光學技術獲得瞭新生,使人們能有效地利用前所未有的先進方法和手段,獲得空前的效益和成果,從而極大地促進瞭生産力的發展,也在一定程度上改變瞭人們的生産及生活方式。
1.1.2半導體激光器簡介
半導體物理學的迅速發展及晶體管的發明,使科學傢們早在20世紀50年代就設想發明半導體激光器。莫斯科列彆捷夫物理研究所的巴索夫(N.G.Basov)提齣建立不平衡量子係統的三能級方法,這種方法可放大受激輻射,並立即被應用於無綫電微波段的量子振蕩器和放大器上。1958年,巴索夫首先提齣利用半導體製造激光器的可能性,後來實現瞭通過PN結、電子束和光泵激發的各種類型的半導體激光器。
在1962年7月召開的固體器件研究國際會議上,美國麻省理工學院林肯實驗室的兩名學者剋耶斯(Kyes)和奎斯特(Qwest)報告瞭GaAs材料的發光現象,這引起通用電氣研究實驗室工程師哈爾(Hall)的極大興趣。哈爾立即製定瞭研製半導體激光器的計劃,數周後獲得成功。
1962年9月,世界上的第一颱半導體激光器幾乎同時由通用電氣公司、國際商用機器公司和麻省理工學院林肯實驗室三個有威望的研究機構發明問世,三傢機構各自在一個月內都報道瞭GaAs的904nm相乾輸齣。
20世紀60年代初期的半導體激光器是同質結型激光器,它是在一種材料上製作的PN結,隻能在77K低溫下以脈衝形式工作。1969年,單異質結激光器研製成功,它是由兩種不同帶隙的半導體材料薄層所組成,其閾值電流密度數值比同質結激光器降低瞭一個數量級,但單異質結激光器仍不能在室溫下連續工作。
1970年,貝爾實驗室等機構相繼研製齣室溫連續工作的雙異質結激光器(DHL),其結構特點是在P型和N型材料之間生長瞭具有較窄能隙材料的一個薄層,因此注入的載流子被限製在該區域內,注入較少的電流就可以實現載流子數的反轉。雙異質結激光器的誕生使半導體激光器的可用波段不斷拓寬,綫寬和調諧性能逐步提高。而足夠可靠的半導體激光器直到70年代中期纔齣現。
異質結激光器的發展,啓發瞭人們將超薄的半導體層作為激光器的激活層,以便産生量子效應。在MBE、MOCVD等半導體外延生長技術的推動下,1978年齣現瞭世界上第一隻半導體量子阱激光器(QWL),它大幅度地提高瞭半導體激光器的各種性能。量子阱半導體激光器與雙異質結激光器相比,具有閾值電流低、輸齣功率高、頻率響應好、光譜綫寬窄、溫度穩定性好和較高的電光轉換效率等許多優點。
從20世紀70年代末開始,半導體激光器明顯嚮著兩個方嚮發展,一類是以傳遞信息為目的的信息型激光器,另一類是以提高光功率為目的的功率型激光器。分布反饋(DFB)式半導體激光器就是伴隨光縴通信和集成光學迴路的發展而齣現的,它於1991年研製成功,完全實現瞭單縱模運行,在相乾技術領域中又開闢瞭巨大的應用前景。在泵浦固體激光器等應用的推動下,高功率半導體激光器在20世紀90年代也取得瞭突破性進展,韆瓦級的高功率半導體激光器已經商品化。
典型的條形半導體激光器(也稱二極管激光器或激光二極管,laser diode,LD)結構如圖1.1所示[1],自上而下,分彆為P型接觸、P摻雜的覆層、P摻雜的波導層、有源區、N摻雜的波導層、N摻雜的覆層以及N型接觸。由於有源區的厚度隻有數微米,而齣光孔徑的寬度在數十微米,所以半導體激光器的輸齣光束呈橢圓形,其縱橫比差彆很大。縱嚮(也稱快軸方嚮)光束發散角大,但光束質量較好,容易準直,而橫嚮(慢軸方嚮)光束發散角小,但光束質量較差,一般是多模,不容易準直。因此,在一些對光束質量有特殊要求的應用中,半導體激光器的輸齣光束需要經過專門的整形之後纔能達到使用要求。
圖1.2是半導體激光器的光學諧振腔的示意圖。從已完成外延生長的半導體晶圓片上劃分齣來的芯片,在與生長平麵垂直方嚮上的兩個解理麵,能對激光提供約30%的反射率,形成激光諧振腔。但這種自然形成的諧振腔損耗太大,而且實際應用中一般也隻希望激光器的一端齣光,所以往往在其中的一個端麵進行高反鍍膜處理,構成如圖1.2所示的諧振腔[1]。
圖1.1條形半導體二極管激光器示意圖
圖1.2激光二極管的光學諧振腔示意圖
1.1.2.1半導體激光器的特點
與固體激光器、氣體激光器等其他種類的激光器相比,半導體激光器(主要指電激勵方式半導體激光器)由於其本身介質的特殊性,使得它具備以下一些特點[2]:
(1)體積小,重量輕。電激勵型半導體激光器器件本身的大小都在1mm3以下,即使加上散熱片和電源裝置,一個封裝完整的成品半導體激光器仍然是一個非常小的小型係統。
(2)可以電流注入激勵。單個的半導體激光器隻需要幾伏的低電壓,毫安級注入電流(典型值2V,15mA)便可達到激光器閾值,發射齣激光。除電源裝置以外,激光器不需要其他任何附加的激勵設備和部件。因為是電功率直接變換成輸齣光功率,所以能量轉換效率高,目前商用半導體激光器的電.光轉換效率達60%以上,實驗室可達70%,理論上的最高效率可達85%。
(3)室溫下可連續振蕩。在室溫附近的溫度範圍內,大多數半導體激光器都能夠實現連續振蕩,給實際應用帶來極大的方便。
(4)波長範圍廣。適當地選擇半導體材料及閤金半導體內各材料的組分,利用成熟的半導體能帶工程,半導體激光器可輸齣從可見光到紅外波長範圍內的任意波長。
(5)增益帶寬寬。即使是一種固定材料的半導體激光器,能夠得到光放大增益的波長範圍也是比較寬的。因此在這個範圍內可以任意選擇發射波長,從而實現波長可調諧輸齣激光器,也能夠實現寬帶光放大器。
(6)可直接調製。因為可以電流注入激勵,所以可以把信號疊加在半導體激光器的激勵電流上,在直流到吉赫茲(GHz)波段的寬頻範圍內,對激光器的振蕩強度、振蕩頻率或相位進行調製。
(7)相乾性好。用單橫模的半導體激光器可以得到空間上相乾性很高的輸齣激光。在DFB,DBR半導體激光器中能産生亞兆赫茲(MHz)窄譜綫寬度的激光輸齣,得到穩定的單縱模激光,其時間上的相乾性也很高。
(8)能夠産生超短激光脈衝。采用增益開關或鎖模的方法,以簡單的係統結構就能從半導體激光器中獲得從納秒(ns)到皮秒(ps)量級的超短激光脈衝。
(9)可靠性高。半導體激光器是單片形狀,具有牢固的機械結構。另外,半導體激光器沒有磨損等因素,所以不需要維修,故壽命長,可靠性高。
(10)可批量生産。由於是小型、層狀結構,半導體激光器可以用光刻和平麵工藝技術製作,適宜於大批量生産。
(11)可單片集成化。由於是小型層狀結構,半導體激光器體積小、重量輕、可電流注入激勵、可靠性高,所以能夠把同種半導體激光器集成在同一襯底上,實現半導體激光器本身的集成。另外,半導體激光器的製造工藝與半導體電子器件和集成電路的生産工藝兼容,所以在同一襯底上,用相同的半導體材料又可以製成光探測器、光調製器和電子電路元件,實現半導體激光器與其他光子及電子器件的集成,得到單片集成的高性能器件。
必須注意到,半導體激光器同時也存在自身的缺點和問題。
(1)溫度特性差。由於半導體材料的各種性質與溫度密切相關,所以半導體激光器的工作特性與溫度有顯著關係,環境溫度的變化會導緻激光器輸齣頻率、閾值電流以及輸齣功率等隨之發生改變。
(2)容易産生噪聲。半導體激光器是利用高濃度的載流子工作,所以載流子的起伏會影響有源區的摺射率。另外,半導體激光器的諧振腔長度短,還采用瞭低反射率的端麵作為反射鏡,所以激光振蕩容易受到外部返迴光的影響。因此,半導體激光也容易産生噪聲和不穩定性。
(3)輸齣光束發散。由於半導體激光器的激光輸齣端麵尺度小且縱橫比差彆很大,激光輸齣時形成橢圓形的發散光束,光束質量較差。一些情況下,需要對光束進行整形纔符閤使用要求。
1.1.2.2半導體激光器的應用
半導體激光器是成熟較早、發展較快的一類激光器,由於它的波長範圍寬,製作簡單、成本低、易於大量生産,並且由於體積小、重量輕、壽命長,因此,品種發展快,生産量大,應用範圍廣。半導體激光器的應用範圍覆蓋瞭整個光電子學領域,已成為當今光電子科學的核心技術,在激光通信、激光測距、激光雷達、激光模擬武器、激光警戒、激光製導跟蹤、引燃引爆、自動控製、檢測儀器等方麵獲得瞭廣泛的應用。
信息光電子方麵的應用:半導體激光器的問世極大地推動瞭信息光電子技術的發展。1978年,半導體激光器開始應用於光縴通信係統,到如今,它是當前光通信領域中發展最快、最為重要的激光光縴通信的重要光源。由於半導體激光器有著超小型、高效率和高速工作的優異特點,所以這類器件的發展,一開始就和光通信技術緊密結閤在一起,它在光通信、光變換、光互連、並行光波係統、光信息處理和光存儲、光計算機外部設備的光耦閤等方麵有重要用途。一般長波長半導體激光器用於光通信,短波長半導體激光器則用於光盤讀齣,而可見光半導體激光器在用作彩色顯示器光源、光存儲的讀齣和寫入、激光打印、激光印刷、高密度光盤存儲係統、條碼讀齣器等方麵有著廣泛的用途。半導體激光器再加上低損耗光縴,對光縴通信産生瞭重大影響,並加速瞭它的發展。可以說,沒有半導體激光器的齣現,就沒有當今的光通信。
工業生産方麵的應用:大功率半導體激光器在精密機械零件等激光加工方麵有重要應用。現在,大功率半導體激光器的投資費用及運營成本已經比Nd:YAG激光器低很多,與CO2激光器相當,甚至更低,所以,大功率半導體激光器逐漸躋身工業應用中的切割和高速深度焊接領域,在汽車車身製造和電子元件的密封封裝方麵有越來越多的應用。其次,高功率半導體激光器在工件的錶麵淬火硬化、錶麵沉積耐磨層或耐磨層的修復、對靜電敏感及溫度敏感元件的軟焊接以及聚閤物的焊接等方麵也存在很好的應用前景。
科學研究方麵的應用:半導體激光器是固體激光器最理想的高效率泵浦光源
前言/序言
光泵浦外腔麵發射激光器:理論、實驗及應用 epub pdf mobi txt 電子書 下載 2024
光泵浦外腔麵發射激光器:理論、實驗及應用 下載 epub mobi pdf txt 電子書