机器学习:从公理到算法(中国计算机学会学术著作丛书) epub pdf  mobi txt 电子书 下载

机器学习:从公理到算法(中国计算机学会学术著作丛书) epub pdf mobi txt 电子书 下载 2024

机器学习:从公理到算法(中国计算机学会学术著作丛书) epub pdf mobi txt 电子书 下载 2024


简体网页||繁体网页
于剑 著

下载链接在页面底部


点击这里下载
    

想要找书就要到 静思书屋
立刻按 ctrl+D收藏本页
你会得到大惊喜!!

发表于2024-11-22


商品介绍



出版社: 清华大学出版社
ISBN:9787302471363
版次:1
商品编码:12118225
包装:平装
开本:16开
出版时间:2017-06-01
用纸:胶版纸
页数:231
字数:301000
正文语种:中文

机器学习:从公理到算法(中国计算机学会学术著作丛书) epub pdf mobi txt 电子书 下载 2024



类似图书 点击查看全场最低价

相关书籍





书籍描述

产品特色

编辑推荐

适读人群 :机器学习的爱好者
  

  机器学习是本次人工智能热潮的核心技术。引起轰动的应用如AlphaGo等都可以看到机器学习的身影。目前,机器学习理论纷繁复杂,算法形式花样百出。人们一直在疑惑,机器学习,特别是其中的深度学习的本质到底是什么?

  作者积二十年研究之力,将各种学习理论融于一体,提出了五条学习公理,据此推导出了常见的学习算法,包括深度学习。如果想要知道机器学习的本质,快速理清各种学习算法之间的关系,《机器学习:从公理到算法(中国计算机学会学术著作丛书)》是一条不容错过的终南捷径。


  

内容简介

  

  《机器学习:从公理到算法(中国计算机学会学术著作丛书)》是一本基于公理研究学习算法的书。共17章,由两部分组成。第一部分是机器学习公理以及部分理论演绎,包括第1、2、6、8章,论述学习公理以及相应的聚类、分类理论。第二部分关注如何从公理推出经典学习算法,包括单类、多类和多源问题。第3~5章为单类问题,分别论述密度估计、回归和单类数据降维。第7、9~16章为多类问题,包括聚类、神经网络、K近邻、支持向量机、Logistic回归、贝叶斯分类、决策树、多类降维与升维等经典算法。最后第17章研究了多源数据学习问题。

  《机器学习:从公理到算法(中国计算机学会学术著作丛书)》可以作为高等院校计算机、自动化、数学、统计学、人工智能及相关专业的研究生教材,也可以供机器学习的爱好者参考。


  

作者简介

于剑,北京交通大学计算机学院教授,博士生导师,交通数据分析与挖掘北京市重点实验室主任,先后获得北京大学数学专业本科、硕士、博士,中国人工智能学会机器学习专委会副主任,中国计算机学会人工智能与模式识别专委会秘书长,承担多项国家自然科学基金项目,发表多篇学术论文,包括TPAMI、CVPR 等。


精彩书评

  NULL

目录

第1章引言1

11机器学习的目的:从数据到知识1

12机器学习的基本框架2

121数据集合与对象特性表示3

122学习判据4

123学习算法5

13机器学习思想简论5

延伸阅读7

习题8

参考文献9

第2章归类理论11

21类表示公理13

22归类公理17

23归类结果分类20

24归类方法设计准则22

241类一致性准则23

242类紧致性准则23

243类分离性准则25

244奥卡姆剃刀准则25

讨论27

延伸阅读29

习题30

参考文献31

第3章密度估计33

31密度估计的参数方法33

311最大似然估计33

312贝叶斯估计35

32密度估计的非参数方法39

321直方图39

322核密度估计39

323K近邻密度估计法40

延伸阅读40

习题41

参考文献41

第4章回归43

41线性回归43

42岭回归47

43Lasso回归48

讨论51

习题52

参考文献52

第5章单类数据降维53

51主成分分析54

52非负矩阵分解56

53字典学习与稀疏表示57

54局部线性嵌入59

55典型关联分析62

56多维度尺度分析与等距映射63

讨论65

习题66

参考文献66

第6章聚类理论69

61聚类问题表示及相关定义69

62聚类算法设计准则70

621类紧致性准则和聚类不等式70

622类分离性准则和重合类非稳定假设72

623类一致性准则和迭代型聚类算法73

63聚类有效性73

631外部方法73

632内蕴方法75

延伸阅读76

习题77

参考文献77

第7章聚类算法81

71样例理论:层次聚类算法81

72原型理论:点原型聚类算法83

721C均值算法84

722模糊C均值86

73基于密度估计的聚类算法88

731基于参数密度估计的聚类算法88

732基于无参数密度估计的聚类算法97

延伸阅读106

习题107

参考文献108

第8章分类理论111

81分类及相关定义111

82从归类理论到经典分类理论112

821PAC理论113

822统计机器学习理论115

83分类测试公理118

讨论119

习题119

参考文献120

第9章基于单类的分类算法:神经网络121

91分类问题的回归表示121

92人工神经网络122

921人工神经网络相关介绍122

922前馈神经网络124

93从参数密度估计到受限玻耳兹曼机129

94深度学习131

941自编码器132

942卷积神经网络132

讨论133

习题134

参考文献134

第10章K近邻分类模型137

101K近邻算法138

1011K近邻算法问题表示138

1012K近邻分类算法139

1013K近邻分类算法的理论错误率140

102距离加权最近邻算法141

103K近邻算法加速策略142

104kd树143

105K近邻算法中的参数问题144

延伸阅读145

习题145

参考文献145

第11章线性分类模型147

111判别函数和判别模型147

112线性判别函数148

113线性感知机算法151

1131感知机数据表示151

1132感知机算法的归类判据152

1133感知机分类算法153

114支持向量机156

1141线性可分支持向量机156

1142近似线性可分支持向量机159

1143多类分类问题162

讨论164

习题165

参考文献166

第12章对数线性分类模型167

121Softmax回归167

122Logistic回归170

讨论172

习题173

参考文献173

第13章贝叶斯决策175

131贝叶斯分类器175

132朴素贝叶斯分类176

1321最大似然估计178

1322贝叶斯估计181

133最小化风险分类183

134效用最大化分类185

讨论185

习题186

参考文献186

第14章决策树187

141决策树的类表示187

142信息增益与ID3算法192

143增益比率与C45算法194

144Gini指数与CART算法195

145决策树的剪枝196

讨论197

习题197

参考文献198

第15章多类数据降维199

151有监督特征选择模型199

1511过滤式特征选择200

1512包裹式特征选择201

1513嵌入式特征选择201

152有监督特征提取模型202

1521线性判别分析202

1522二分类线性判别分析问题202

1523二分类线性判别分析203

1524二分类线性判别分析优化算法205

1525多分类线性判别分析205

延伸阅读207

习题207

参考文献207

第16章多类数据升维:核方法209

161核方法209

162非线性支持向量机210

1621特征空间210

1622核函数210

1623常用核函数212

1624非线性支持向量机212

163多核方法213

讨论215

习题215

参考文献216

第17章多源数据学习217

171多源数据学习的分类217

172单类多源数据学习217

1721完整视角下的单类多源数据学习218

1722不完整视角下的单类多源数据学习220

173多类多源数据学习221

174多源数据学习中的基本假设222

讨论222

习题223

参考文献223

后记225

索引229


精彩书摘

第 1章引言

好好学习,天天向上。 ——毛泽东, 1951年题词
大数据时代,人类收集、存储、传输、管理数据的能力日益提高,各行各业已经积累了大量的数据资源,如著名的 Nature杂志于 2008年 9月出版了一期大数据专刊 [1],列举了生物信息、交通运输、金融、互联网等领域的大数据应用。如何有效分析数据并得到有用信息甚至知识成为人们关注的焦点。人们寄希望于智能数据分析来完成该项任务。机器学习是智能数据分析技术的核心理论。 Science杂志于 2015年 7月组织了一个人工智能专题 [2],其中有关机器学习的内容依然占据了重要的部分。本章将讨论机器学习的基本目的、基本框架、思想发展以及未来走向。
1.1机器学习的目的:从数据到知识
人类最重要的一项能力是能够从过去的经验中学习,并形成知识。千百年来,人类不断从学习中积累知识,为人类文明打下了坚实的基础。“学习”是人与生俱来的基本能力,是人类智能( human intelligence)形成的必要条件。自 2000年以来,随着互联网技术的普及,积累的数据已经超过了人类个体处理的极限,以往人类自己亲自处理数据形成知识的模式已经到了必须改变的地步,人类必须借助于计算机才能处理大数据,更直白地说,我们希望计算机可以像人一样从数据中学到知识。
由此,如何利用计算机从大数据中学到知识成为人工智能研究的热点。“机器学习”(machine learning)是从数据中提取知识的关键技术。其初衷是让计算机具备与人类相似的学习能力。迄今为止,人们尚不知道如何使计算机具有与人类相媲美的学习能力。然而,每年都有大量新的针对特定任务的机器学习算法涌现,帮助人们发现完成这些特定任务的新知识(有时也许仅仅是隐性新知识)。对机器学习的研究不仅已经为人们提供了许多前所未有的应用服务(如信息搜索、机器翻译、语音识别、无人驾驶等),改善了人们的生活,而且也帮助人们开辟了许多新的学科领域,如计算金融学、计算广告学、计算生物学、计算社会学、计算历史学等,为人类理解这个世界提供了新的工具和视角。可以想见 ,作为从数据中提取知识的工具,机器学习在未来还会帮助人们进一步开拓新的应用和新的学科。
机器学习存在很多不同的定义,常用的有三个。第一个常用的机器学习定义是“计算机系统能够利用经验提高自身的性能”,更加形式化的论述可见文献 [3]。机器学习名著《统计学习理论的本质》给出了机器学习的第二个常见定义,“学习就是一个基于经验数据的函数估计问题” [4]。在《统计学习基础》这本书的序言里给出了第三个常见的机器学习定义,“提取重要模式、趋势,并理解数据,即从数据中学习” [11]。这三个常见定义各有侧重:第一个聚焦学习效果,第二个的亮点是给出了可操作的学习定义,第三个突出了学习任务的分类。但其共同点是强调了经验或者数据的重要性,即学习需要经验或者数据。注意到提高自身性能需要知识,函数、模式、趋势显然自身是知识,因此,这三个常见的定义也都强调了从经验中提取知识,这意味着这三种定义都认可机器学习提供了从数据中提取知识的方法。众所周知,大数据时代的特点是“信息泛滥成灾但知识依然匮乏”。可以预料,能自动从数据中学到知识的机器学习必将在大数据时代扮演重要的角色。
那么如何构建一个机器学习任务的基本框架呢?
1.2机器学习的基本框架
考虑到我们希望用机器学习来代替人学习知识,因此,在研究机器学习以前,先回顾一下人类如何学习知识是有益的。对于人来说,要完成一个具体的学习任务,需要学习材料、学习方法以及学习效果评估方法。如学习英语,需要英语课本、英语磁带或者录音等学习材料,明确学习方法是背诵和练习,告知学习效果评估方法是英语评测考试。检测一个人英语学得好不好,就看其利用学习方法从学习材料得到的英语知识是否能通过评测考试。机器学习要完成一个学习任务,也需要解决这三方面的问题,并通过预定的测试。
对应于人类使用的学习材料,机器学习完成一个学习任务需要的学习材料,一般用描述对象的数据集合来表示,有时也用经验来表示。对应于人类完成学习任务的学习方法,机器学习完成一个学习任务需要的学习方法,一般用学习算法来表示。对应于人类完成一个学习任务的学习效果现场评估方法(如老师需要时时观察课堂气氛和学生的注意力情况),机器学习完成一个学习任务也需要对学习效果进行即时评估,一般用学习判据来表示。对于机器学习来说,用来描述数据对象的数据集合对最终学习任务的完成状况有重要影响,用来指导学习算法设计的学习判据有时也用来评估学习算法的效果,但一般机器学习算法性能的标准评估会不同于学习判据,正如人学习的学习效果即时评估方式与最终的评估方式一般也不同。对于机器学习来说,通常也会有特定的测试指标,如正确率,学习速度等。
可以用一个具体的机器学习任务来说明。给定一个手写体数字字符数据集合,希望机器能够通过这些给定的手写体数字字符,学到正确识别手写数字字符的知识。显然,学习材料是手写体数字字符数据集,学习算法是字符识别算法,学习判据可以是识别正确率,也可以是其他有助于提高识别正确率的指标。
数据集合、学习判据、学习算法对于任何学习任务都是需要讨论的对象。数据集合的不同表示,影响学习判据与学习算法的设计。学习判据与学习算法的设计密切相关,下面分别讨论。
1.2.1数据集合与对象特性表示
对于一个学习任务来说,我们希望学到特定对象集合的特定知识。无论何种学习任务,学到的知识通常是与这个世界上的对象相关。通过学到的知识,可以对这个世界上的对象有更好的描述,甚至可以预测其具有某种性质、关系或者行为。为此,学习算法需要这些对象的特性信息,这些信息可以客观观测,即关于特定对象的特性信息集合,该集合一般称为对象特性表示,是学习任务作为学习材料的数据集合的组成部分。理论上,用来描述对象的数据集合的表示包括对象特性输入表示、对象特性输出表示。
显然,对象特性输入表示是我们能够得到的对象的观测描述,对象特性输出表示是我们学习得到的对象的特性描述。需要指出的是,对象的特性输入表示或者说对象的输入特征一定要与学习任务相关。根据丑小鸭定理( Ugly Duckling Theorem)[5],不存在独立于问题而普遍适用的特征表示,特征的有效与否是问题依赖的。丑小鸭定理是由 Satosi Watanabe于 1969年提出的,其内容可表述为“如果选定的特征不合理,那么世界上所有事物之间的相似程度都一样,丑小鸭与白天鹅之间的区别和两只白天鹅之间的区别一样大”。该定理表明在没有给定任何假设的情况下,不存在普适的特征表示;相似性的度量是特征依赖的,是主观的、有偏置的,不存在客观的相似性度量标准。因此,对于任何机器学习任务来说,得到与学习任务匹配的特征表示是学习任务成功的首要条件。对于机器学习来说,一般假设对象特征已经给定,特别是对象特性输入表示。
对于对象特性输入表示,通常有三种表示方式。一种是向量表示,对于每个对象,可以相对独立地观察其特有的一些特征。这些特征组成该对象的一个描述,并代表该对象。第二种表示是网络表示,对于每个对象,由其与其他对象的关系来描述,简单说来,观察得到的是对象之间的彼此关系。第三种是混合表示 ,对于每个对象,其向量表示和网络表示同时存在。
不论对于人还是机器,能够提供学习或者训练的对象总是有限的。不妨假设有 N个对象,对象集合为 O = {o1,o2, ··· ,oN },其中 ok表示第 k个对象。其对应的对象特性输入表示用 X = {x1,x2, ··· ,xN }来表示,其中 xk表示对象 ok的特性输入表示。当每个对象有向量表示时, xk可以表示为 xk =[x1k,x2k, ··· ,xpk]T。因此,对象特性输入表示 X可以用矩阵 [xτk]p×N来表示,其中 p表示对象输入特征的维数, xτk表示 ok的第 τ个输入特征值,这些特征值可以是名词性属性值,也可以是连续性属性值。
如果对象特性输入表示 X存在网络表示,即 X可以用矩阵 [Nkl]N×N来表示,其中 Nkl表示对象 ok与对象 ol的网络关系。如果是相似性关系,则对象特性输入表示 X为相似性矩阵 S(X)=[skl]N×N,其中 skl表示对象 ok与对象 ol的相似性。通常, skl越大表明对象 ok与对象 ol的相似性越大。因此,对象 ok可以由行向量 [sk1,sk2, ··· ,skN ]表示。如果是相异性关系,则对象特性输入表示 X为相异性矩阵 D(X)=[Dkl]N×N,其中 Dkl表示对象 ok与对象 o1的相异性。类似的,Dkl越大表明对象 ok与对象 ol的相异性越大。因此,对象 ok可以由行向量 [Dk1,Dk2, ··· ,DkN ]表示。如果是相邻关系,对象特性输入表示 X为邻接性矩阵 A(X)=[akl]N×N,其中 akl表示对象 ok与对象 ol是否相邻,通常其取值为 0或者 1。
对应的对象特性输出表示用 Y = {y1,y2, ··· ,yN }来表示,其中 yk表示对象 ok的特性输出表示。具体的表示形式由学习算法决定,通常是对象特性输出表示 Y可以用矩阵 [yτk]d×N来表示,其中 d表示对象输出特征的维数, yτk表示 ok的第 τ个输出特征值,这些特征值通常是连续性属性值。
显然,除去对象特性输入、输出表示,数据集合还有其他部分,这些部分的表示与知识表示有关,通常依赖于知识表示。知识表示不同,学习算法的数据集合输入输出表示也会不同。一个容易想到的公开问题是,适合于机器学习的统一知识表示是否存在?如果存在,是何形式?现今的机器学习方法一般是针对具体的学习任务,设定具体的知识表示。因此,本章先不讨论学习算法的输入输出统一表示,这个问题留待第 2章讨论。
1.2.2学习判据
完成一个学习任务,需要一个判据作为选择学习到的知识好坏的评价标准。理论上,符合一个学习任务的具体化知识可以有很多。通常,如何从中选出最好的具体化知识表示是一个 NP难问题。因此,需要限定符合一个特定学习任务的具体化知识范围,适当减小知识假设空间的大小,减少学习算法的搜索空间。为了从限定的假设空间选择最优的知识表示,需要根据不同的学习要求来设定学习判据对搜索空间各个元素的不同分值。判据设定的准则有很多,理论上与学习任务相关,本书将在以后的章节中进行讨论。需要指出的是,有时学习判据也被称为目标函数。在本书中,对于这两个术语不再特意区别。

1.2.3学习算法
在学习判据给出了从知识表示空间搜索最优知识表示的打分函数之后,还需要设计好的优化方法,以便找出对应于打分函数达到最优的知识表示。此时

机器学习:从公理到算法(中国计算机学会学术著作丛书) epub pdf mobi txt 电子书 下载 2024

机器学习:从公理到算法(中国计算机学会学术著作丛书) 下载 epub mobi pdf txt 电子书 2024

机器学习:从公理到算法(中国计算机学会学术著作丛书) pdf 下载 mobi 下载 pub 下载 txt 电子书 下载 2024

机器学习:从公理到算法(中国计算机学会学术著作丛书) mobi pdf epub txt 电子书 下载 2024

机器学习:从公理到算法(中国计算机学会学术著作丛书) epub pdf mobi txt 电子书 下载
想要找书就要到 静思书屋
立刻按 ctrl+D收藏本页
你会得到大惊喜!!

读者评价

评分

一直都喜欢在京东购买东西,生活用品,办公用品,要买什么东西第一想到就是京东!又快又方便!给我们的生活带来太多便利了,打开手机,轻轻东西指头,把想要的东西一搜马上就出来,然后下单支付,在家坐等收货就行!除了下单方便,不管是发货速度和打包质量,还是商品质量,都是无可挑剔,必须32个赞!除了发货速度商品质量和打包质量,京东小哥的服务态度也是要好好说说,每天跑那么地方,不管烈日炎炎还是刮风下雨,风雨不变一-如既往地按正常时间送到客户手,上,所以必须32个赞!我家在五楼,没有电梯一直都喜欢在京东购买东西,生活用品,办公用品,要买什么东西第一想到就是京东!又快又方便!给我们的生活带来太多便利了,打开手机,轻轻东西指头,把想要的东西一搜马上就出来,然后下单支付,在家坐等收货就行!除了下单方便,不管是发货速度和打包质量,还是商品质量,都是无可挑剔,必须32个赞!除了发货速度商品质量和打包质量,京东小哥的服务态度也是要好好说说,每天跑那么地方,不管烈日炎炎还是刮风下雨,风雨不变--如既往地按正常时间送到客户手上,所以必须32个赞!

评分

非常感谢京东商城给予的优质的服务,从仓储管理、物流配送等各方面都是做的非常好的。送货及时,配送员也非常的热情,有时候不方便收件的时候,也安排时间另行配送。同时京东商城在售后管理上也非常好的,以解客户忧患,排除万难。给予我们非常好的购物体验。

评分

和此卖家交流,不由得精神为之一振,自觉七经八脉为之一畅,我在京东买了这么多年,所谓阅商无数,但与卖家您交流,我只想说,老板你实在是太好了,你的高尚情操太让人感动了,本人对此卖家之仰慕如滔滔江水连绵不绝,海枯石烂,天崩地裂,永不变心。交易成功后,我的心情是久久不能平静,自古英雄出少年,卖家年纪轻轻,就有经天纬地之才,定国安邦之智,而今,天佑我大中华,沧海桑田5000年,神州平地一声雷,飞沙走石,大雾迷天。

评分

今购

评分

logistics,distribution and so on.Delivery in a

评分

management Jingdong cus

评分

印刷包装挺不错的,内容一般,不是小甲鱼的粉没有必要买。很喜欢在东东上网购 真的不错的 比其他网店实在 服务好 好喜欢 还会介绍朋友来

评分

一直都喜欢在京东购买东西,生活用品,办公用品,要买什么东西第一想到就是京东!又快又方便!给我们的生活带来太多便利了,打开手机,轻轻东西指头,把想要的东西一搜马上就出来,然后下单支付,在家坐等收货就行!除了下单方便,不管是发货速度和打包质量,还是商品质量,都是无可挑剔,必须32个赞!除了发货速度商品质量和打包质量,京东小哥的服务态度也是要好好说说,每天跑那么地方,不管烈日炎炎还是刮风下雨,风雨不变一如既往地按正常时间送到客户手上,所以必须32个赞!我家在六楼,没有电梯一直都喜欢在京东购买东西,生活用品,办公用品,要买什么东西第一想到就是京东!又快又方便!给我们的生活带来太多便利了,打开手机,轻轻东西指头,把想要的东西一搜马上就出来,然后下单支付,在家坐等收货就行!除了下单方便,不管是发货速度和打包质量,还是商品质量,都是无可挑剔,必须32个赞!除了发货速度商品质量和打包质量,京东小哥的服务态度也是要好好说说,每天跑那么地方,不管烈日炎炎还是刮风下雨,风雨不变一如既往地按正常时间送到客户手上,所以必须32个赞!我家在六楼,没有电梯,是楼梯房,每次都不怕辛苦还很耐心地送货上楼,不管东西有多少

评分

候,

机器学习:从公理到算法(中国计算机学会学术著作丛书) epub pdf mobi txt 电子书 下载 2024

类似图书 点击查看全场最低价

机器学习:从公理到算法(中国计算机学会学术著作丛书) epub pdf mobi txt 电子书 下载 2024


分享链接









相关书籍


本站所有内容均为互联网搜索引擎提供的公开搜索信息,本站不存储任何数据与内容,任何内容与数据均与本站无关,如有需要请联系相关搜索引擎包括但不限于百度google,bing,sogou

友情链接

© 2024 book.idnshop.cc All Rights Reserved. 静思书屋 版权所有