中科大 数学分析教程 上册+下册 第3版第三版 常庚哲/史济怀 中科学技术大学出版社 数 epub pdf mobi txt 电子书 下载 2024
发表于2024-11-23
中科大 数学分析教程 上册+下册 第3版第三版 常庚哲/史济怀 中科学技术大学出版社 数 epub pdf mobi txt 电子书 下载 2024
十二五重点图书出版规划项目
中科技大学精品教材
数学分析教程
第3版
上下册
本套装包含以下图书
数学分析教程 第3版 上册
作者:常庚哲,史济怀 编著
出版社:中科学技术大学出版社
出版时间:2012年8月
版 次:3
页 数:499
字 数:629000
印刷时间:2012-8-1
开 本:16开
纸 张:胶版纸
印 次:3
包 装:平装
ISBN:9787312030093
定价:59.00元
内容推荐
本教材第2版为普通高等教育“十五”规划教材,在内同类教材中有着非常广泛和积极的影响.本版是在第2版的基础上经过较大的修改编写而成的,内容得到了必要而合理的调整,逻辑结构更加清晰明了.本教材分上、下两册.本书为上册,内容包括实数和数列极限,函数的连续性,函数的导数,Taylor定理,求导的逆运算,函数的积分,积分学的应用,多变量函数的连续性,多变量函数的微分学,以及多项式的插值与逼近初步(附录).书中配有丰富的练习题,可供学生巩固基础知识;同时也有适量的问题,可供学有余力的学生练习,并且书后附有问题的解答或提示,以供参考.本书可供综合性大学和理工科院校的数学系作为教材使用,也可作为科研人员的参考书。
作者简介
关于两位作者,我们在前面的一些新书预报中也做过详细的介绍,现重新整理如下,希望能帮助到读者。
常庚哲,中科技大学数学系教授,博士生导师,安徽省数学会理事长,中数学会奥林匹克委员会委员教练员。1984年被《计算机辅助几何设计》杂志聘为该刊编委,成为该刊编委中的中学者。1986年被列入第八版美出版的《世界名人录》。1988年任第29届IMO中队领队。在计算几何领域中,与张景中等合作,对二维及高维上的Bernstein多项式证明凸性逆定理成立,解决了一个多年难题。
史济怀,1958年毕业于复旦大学数学系,同年9月分配到刚成立的中科学技术大学数学系任教,先后担任数学系副主任、理科教学评估组组长、研究生院副院长、教务长、副校长和研究生院院长等职。50多年来,他除了担任副校长职务时只上研究生课之外,其余大部分时间都没有下过本科生讲台,他一直为本科生讲授《数学分析》、《常微分方程》、《线性代数》、《复变函数》、《数理方程》等多门基础课,送走了一届又一届的科大学子。直到66岁退休返聘后,他仍然坚持一周6课时的工作量,为本科生讲授《数学分析》。他用50余年的教学历程诠释了默默奉献、教书育人的为师风范。
目录
总序第3版前言第2版前言第1章 实数和数列极限 1.1 实数 1.2 数列和收敛数列 1.3 收敛数列的性质 1.4 数列极限概念的推广 1.5 单调数列 1.6 自然对数的底e 1.7 基本列和Cauchy收敛原理 1.8 上确界和下确界 1.9 有限覆盖定理 1.10 上极限和下极限 1.11 Stolz定理第2章 函数的连续性 2.1 集合的映射 2.2 集合的势 2.3 函数 2.4 函数的极限 2.5 极限过程的其他形式 2.6 无穷小与无穷大 2.7 连续函数 2.8 连续函数与极限计算 2.9 函数的一致连续性 2.10 有限闭区间上连续函数的性质 2.11 函数的上极限和下极限 2.12 混沌现象第3章 函数的导数 3.1 导数的定义 3.2 导数的计算 3.3 高阶导数 3.4 微分学的中值定理 3.5 利用导数研究函数 3.6 L’Hospital法则 3.7 函数作图第4章 一元微分学的——Taylor定理 4.1 函数的微分 4.2 带Peano余项的Taylor定理 4.3 带Lagrange余项和cauchy余项的Taylor定理第5章 求导的逆运算 5.1 原函数的概念 5.2 分部积分法和换元法 5.3 有理函数的原函数 5.4 可有理化函数的原函数第6章 函数的积分 6.1 积分的概念 6.2 可积函数的性质 6.3 微积分基本定理 6.4 分部积分与换元 6.5 可积性理论 6.6 Lebesgue定理 6.7 反常积分 6.8 数值积分第7章 积分学的应用 7.1 积分学在几何学中的应用 7.2 物理应用举例 7.3 面积原理 7.4 Wallis公式和Stirling公式第8章 多变量函数的连续性 8.1 n维Euclid空间 8.2 Rn中点列的极限 8.3 Rn中的开集和闭集 8.4 列紧集和紧致集 8.5 集合的连通性 8.6 多变量函数的极限 8.7 多变量连续函数 8.8 连续映射第9章 多变量函数的微分学 9.1 方向导数和偏导数 9.2 多变量函数的微分 9.3 映射的微分 9.4 复合求导 9.5 曲线的切线和曲面的切平面 9.6 隐函数定理 9.7 隐映射定理 9.8 逆映射定理 9.9 高阶偏导数 9.10 中值定理和Taylor公式 9.11 极值 9.12 条件极值附录 多项式的插值与逼近初步——Bezier曲线和Coo曲面举例问题的解答或提示索引
数学分析教程 第3版 下册
作者:常庚哲,史济怀 编著
出版社:中科学技术大学出版社
出版时间:2013年1月
版 次:3
页 数:440
字 数:539000
印刷时间:2013-1-1
开 本:16开
纸 张:胶版纸
印 次:3
包 装:平装
ISBN:9787312031311
定价:53.00元
编辑推荐
常庚哲、史济怀编著的《数学分析教程(下第3版)》内容包括多重积分,曲线积分,曲面积分,场的数学,数项数,函数列与函数项数,反常积分,Fourier分析,含参变量积分。书中配有丰富的练习题,可供学生巩固基础知识;同时也有适量的问题,可供学有余力的学生练习,并且书后附有问题的解答或提示,以供参考。
内容推荐
常庚哲等编著的《数学分析教程》第2版为普通高等教育“十五”规划教材,在内同类教材中有着非常广泛和积极的影响。本版是在第2 版的基础上经过较大的修改编写而成的,内容得到了必要而合理的调整,逻辑结构更加清晰明了。
《数学分析教程》分上、下两册。本书为下册,内容包括多重积分,曲线积分,曲面积分,场的数学,数项数,函数列与函数项数,反常积分,Fourier分析,含参变量积分。书中配有丰富的练习题,可供学生巩固基础知识;同时也有适量的问题,可供学有余力的学生练习,并且书后附有问 题的解答或提示,以供参考。
《数学分析教程》可供综合性大学和理工科院校的数学系作为教材使用,也可作为科研人员的参考书。
目录
总序
第3版前言
第2版前言
第10章 多重积分
10.1 矩形区域上的积分
10.2 Lebesgue定理
10.3 矩形区域上二重积分的计算
10.4 有界集合上的二重积分
10.5 有界集合上积分的计算
10.6 二重积分换元
10.7 三重积分
10.8 n重积分
10.9重积分物理应用举例
第11章 曲线积分
11.1型曲线积分
11.2第二型曲线积分
11.3 Green公式
11.4 等周问题
第12章 曲面积分
12.1 曲面的面积
12.2型曲面积分
12.3第二型盐面积分
12.4 Gauss公式和Stokes公式
12.5 微分形式和外微分运算
第13章 场的数学
13.1 数量场的梯度
13.2 向量场的散度
13.3 向量场的旋度
13.4 有势场和势函数
13.5 旋度场和向量势
第14章 数项数
14.1 无穷数的基本性质
14.2 正项数的比较判别法
14.3 正项数的其他判别法
14.4 任意项数
14.5 绝对收敛和条件收敛
14.6 数的乘法
14.7 无穷乘积
第15章 函数列与函数项数
15.1 问题的提出
15.2 一致收敛
15.3 极限函数与和函数的性质
15.4 由幂数确定的函数
15.5 函数的幂数展开式
15.6 用多项式一致逼近连续函数
15.7 幂数在组合数学中的应用
15.8从两个著名的例子谈起
第16章 反常积分
16.1 非负函数无穷积分的收敛判别法
16.2 无穷积分的Dirichlet和Abel收敛判别法
16.3 瑕积分的收敛判别法
16.4 反常重积分
第17章 Fourier分析
17.1 周期函数的Fourier数
17.2 Fourier数的收敛定理
17.3 Fourier数的Cesfiro求和
17.4 平方平均逼近
17.5 Fourier积分和Fourier变换
第18章 含参变量积分
18.1 含参变量的常义积分
18.2 含参变量反常积分的一致收敛
18.3 含参变量反常积分的性质
18.4 r函数和B函数
问题的解答或提示
索引
...................
.......................
中科大 数学分析教程 上册+下册 第3版第三版 常庚哲/史济怀 中科学技术大学出版社 数 epub pdf mobi txt 电子书 下载 2024
中科大 数学分析教程 上册+下册 第3版第三版 常庚哲/史济怀 中科学技术大学出版社 数 下载 epub mobi pdf txt 电子书 2024中科大 数学分析教程 上册+下册 第3版第三版 常庚哲/史济怀 中科学技术大学出版社 数 mobi pdf epub txt 电子书 下载 2024
中科大 数学分析教程 上册+下册 第3版第三版 常庚哲/史济怀 中科学技术大学出版社 数 epub pdf mobi txt 电子书 下载评分
评分
评分
评分
评分
评分
评分
评分
中科大 数学分析教程 上册+下册 第3版第三版 常庚哲/史济怀 中科学技术大学出版社 数 epub pdf mobi txt 电子书 下载 2024