《人工听觉:新视野》是2011年Springer出版的“听觉研究手册系列”丛书的一卷Auditory Prostheses New Horizons的中文版,覆盖了当前人工听觉的新进展。原书邀请了全世界30多位专家,全面总结人工听觉发展的各个方向,介绍新的研究进展。《人工听觉:新视野》共15章,主要内容包括听觉神经假体的发展、双侧人工耳蜗、声听觉与电听觉的结合、适用于传导性和感音神经性听力损伤的植入式听力设备、前庭植入系统、光刺激听神经、贯穿听神经式电极阵列、耳蜗神经核听觉假体、中脑听觉植入系统、CI植入后中枢听觉系统的发展和适应、CI植入者的听觉训练、小儿人工耳蜗植入者口头及书面交流的发展、音乐感知、声调语言与人工耳蜗、CI植入者的多感觉处理等。书末附彩图以便查阅。
作者简介
目录
编辑推荐
《人工听觉:新视野》可供听觉研究方向的科研人员参考使用。
文摘
第1章 听觉神经假体的发展 曾凡钢 1 引 言 20世纪六七十年代是人工听觉假体发展的黄金时代。在那令人振奋的20年间,各种竞争的想法和创新的实验推动人工听觉取得了巨大的进展。这20年(1960~1979年),总让作者联想到中国的战国时代(Zeng et al.,2008)。此间,House(1974)推出的单通道人工耳蜗和Clark等(1977)推出的多通道人工耳蜗之间的竞争被推到了风口浪尖:前者在1984年成为早的商用人工耳蜗产品;而后者却成为成功的神经假体。多通道人工耳蜗已经帮助全世界超过20万聋人在一定程度上重建了听觉功能。我们评价人工耳蜗所取得的成就之非凡,一方面,作为产品,它需要和传统助听器及触觉助听器等同类产品展开竞争;另一方面,作为新事物,它需要打破传统主流思想和聋人群体的疑问(Levitt,2008)。20世纪八九十年代,一系列人工耳蜗的技术进步,尤其是信号处理策略的突破,大大提高了人工耳蜗植入者的听声效果(Loizou,2006;Wilson and Dorman,2007)。 图1.1 3家人工耳蜗制造商,不同年代系列产品在句子识别得分。包括Cochlear公司的Nucleus系列,AB公司的Clarion系列,以及Med-El公司产品(改编自(Zeng et al.,2008),图3) 图1.1中显示了3家主要人工耳蜗厂商不同时代产品的语句识别得分。所有厂家的当代人工耳蜗产品均采用类似的信号处理策略——在有限数量的频段内提取时域包络信息,并通过植入耳蜗内的12~22个电极的非同时刺激来表达这些信息。人工耳蜗植入者普遍表现出较好的言语识别效果(安静环境下的言语识别率可达到70%~80%),半数的植入者都可以进行电话交流。 尽管在安静环境下的言语识别效果良好,人工耳蜗植入者和正常听力者的听觉能力之间依然存在鸿沟。举例来说,植入者在噪声环境下的听声效果很糟糕,稳态噪声背景下,有接近15dB的损失;竞争语音环境中,有近30dB的听力损失(Zeng et al.,2005)。植入者对音乐的感知也同样有限:如果说对节奏的识别还差强人意,那么对旋律和音色的感知只能说微乎其微(McDermott,2004)。后,对于使用声调语言(汉语普通话、泰语、越南语)的植入者(Peng et al.,2008),声调的感知和发声的能力与正常听力者相去甚远(图1.2)。 图1.2 正常听力(NH)人群和人工耳蜗(CI)植入者在噪声下言语识别能力(a)、音乐和声调识别能力(b)的比较。噪声下言语识别能力,通过刚好能达到50%言语识别率时的信噪比来体现,音乐识别能力通过旋律识别的正确率来体现,声调识别率通过汉语普通话声调识别的正确率来体现(改编自(Zeng et al.,2008),图21) 为了让人工耳蜗植入者的康复效果更接近正常听力者,亟待引入新的概念和手段。人工耳蜗也的确在不断创新,与21世纪的前5年相比,近5年(2006~2010),关于人工耳蜗的文献已经从1196篇增长到1792篇(图1.3)。这些增长主要来源于双侧人工耳蜗,相关主题的文献几乎增长了一倍;另外,助听器与人工耳蜗联合使用的研究文献增长了4倍之多。而中脑刺激及光学人工耳蜗这些新的手段也开始涌现。 图1.3 自1972年到2010年12月,每年从PubMed检索的关于人工耳蜗的文献数量 (:// href='#'>.ncbi.nlm.nih.gov) 在2004年,Springer出版的“听觉研究手册”里包含了人工耳蜗一卷,着重介绍电刺激听觉的基础科学与技术。而本卷将传统人工耳蜗的内容,关注新的技术进展,内容包括从双侧植入到中脑刺激器;同时也介绍新的评估手段,内容包括从听觉训练到跨模态处理。 2 技术的发展 随着技术的进步,人工耳蜗的功效已经被极大地提升,被应用于更广泛的听觉相关疾病的治疗。下面将从两个角度介绍这些技术:一方面,听觉感知可由多种形式的能量诱发(图1.4)。正常的听觉通路中,声波能量被转换为机械振动,并进一步转换为电势能。在有缺损的听觉通路中,根据听觉损失的种类和程度,可分为不同的治疗方法。大多数耳蜗受损的患者,症结在于听觉通路中机械放大功能受损。助听器可以对声信号进行放大,通过佩戴助听器可以在一定程度上弥补声音传导中的损失(图1.4的条通路)。为了增大放大倍数和减少不良声学反馈,声音可以直接被转换成机械振动来刺激中耳(图1.4的第二条通路)。但对于重度耳聋患者,传统的人工耳蜗跳过了听觉通路的前端部分,将声信号转换为电脉冲,来直接刺激耳蜗内残存的听神经(图1.4的第三条通路)。近,光学刺激也被发现可以直接激活神经组织(图1.4的第四条通路)。这将很有可能取代传统的电刺激,成为一种新的刺激手段,用于神经刺激器。 图1.4 对听觉系统听力重建的不同刺激方法。助听器图片摘自 href='#'>.starkey.,中耳植入系统图片摘自 href='#'>.medel.,人工耳蜗图片来自 href='#'>.cochlear.,以及光学刺激图片来自 href='#'>.optoiq.(后附彩图) 另一方面,刺激听觉系统的不同部位,可以用来治疗不同类型的听觉受损疾病。助听器可以将声音放大来治疗耳蜗损伤。对佩戴助听器的人来说,放大的声刺激通过耳道传至鼓膜(听力正常者的鼓膜接收的声刺激直接来源于外耳道,没有经过人为放大)。整个中耳听骨链中从砧骨到蹬骨都可以进行机械式刺激,提供更大的放大倍数,用于治疗与外耳道塌陷或慢性耳科疾病相关的传导性听力损失。用电脉冲或激光直接刺激听神经,可以让人产生听觉感知。这种方法主要用于内毛细胞缺失的患者。通过刺激从耳蜗核到皮层的整个听觉中枢系统,可以治疗听神经瘤及其他神经疾病。另外,电刺激已经被应用于治疗听神经病、耳鸣和多种其他疾病(Trimble et al.,2008;van de Heyning et al.,2008;Teagle et al.,2010),但这些方面的内容本书没有涉及。 单侧人工耳蜗技术成熟后,很自然地扩展到双耳植入。在过去十年(2000~2010年)里,双侧植入的数量剧增,相关的科学理解也逐渐成熟。早在1993年,van Hoesel就开展了例双侧人工耳蜗研究(van Hoesel et al.,1993)。在第2章,他将系统地综述双侧植入的原理、进展和现存问题。与单侧植入相比,双侧植入可以确保“好耳”得到植入。双侧植入提高了噪声下的双侧言语识别效果和声源定位能力,伹效果十分有限,且提升的原因几乎都来源于利用了双耳间声级差的声学头影效应。目前(2010年)还没有证据说明双侧植入者能够有效地利用双耳间时间差,来获得功能型双耳听觉。一方面可能源于植入者被剥夺双耳听觉的时间较长(Han