內容簡介
These notes form the contents of a Nachdiplomvorlesung given at the Forschungs-institut fiir Mathematik of the Eidgen6ssische Technische Hochschule, Ziirich fromNovember, 1984 to February, 1985. Prof. K. Chandrasekharan and Prof. JiirgenMoser have encouraged me to write them up for inclusion in the series, published byBirkhnser, of notes of these courses at the ETH.
Dr. Albert Stadler produced detailed notes of the first part of this course, and veryintelligible class-room notes of the rest. Without this work of Dr. StUrdier, these noteswould not have been written. While I have changed some things (such as the proof ofthe Serre duality theorem, here done entirely in the spirit of Serres original paper), thepresent notes follow Dr. Stadlers fairly closely.
內頁插圖
目錄
1. algebraic functions
2. riemann surfaces
3. the sheaf of germs of holomorphic functions
4. the riemann surface of an algebraic function
5. sheaves
6. vector bundles, line bundles and divisors
7. finiteness theorems
8. the dolbeault isomorphism
9. weyls lemma and the serre duality theorem
10. the riemann-roch theorem and some applications
11. further properties of compact riemann surfaces
12. hypereuiptic curves and the canonical map
13. some geometry of curves in projective space
14. bilinear relations
15. the jacobian and abels theorem
16. the riemann theta function
17. the theta divisor
18. torellis theorem
19. riemanns theorem on the singularities of θ
references
前言/序言
These notes form the contents of a Nachdiplomvorlesung given at the Forschungs-institut fiir Mathematik of the Eidgen6ssische Technische Hochschule, Ziirich fromNovember, 1984 to February, 1985. Prof. K. Chandrasekharan and Prof. JiirgenMoser have encouraged me to write them up for inclusion in the series, published byBirkhnser, of notes of these courses at the ETH.
Dr. Albert Stadler produced detailed notes of the first part of this course, and veryintelligible class-room notes of the rest. Without this work of Dr. StUrdier, these noteswould not have been written. While I have changed some things (such as the proof ofthe Serre duality theorem, here done entirely in the spirit of Serres original paper), thepresent notes follow Dr. Stadlers fairly closely.
緊黎曼麯麵 [Compact Riemann Surfaces] epub pdf mobi txt 電子書 下載 2024
緊黎曼麯麵 [Compact Riemann Surfaces] 下載 epub mobi pdf txt 電子書