齣版社: 世界圖書齣版公司
ISBN:9787510048043
版次:1
商品編碼:11142969
包裝:平裝
外文名稱:Topics in Banach Space Theory
開本:24開
齣版時間:2012-09-01
用紙:膠版紙
頁數:188
正文語種:英文
巴拿赫空間講義(英文版) [Topics in Banach Space Theory] epub pdf mobi txt 電子書 下載 2024
內容簡介
This book grew out of a one-semester course given by the second author in 2001 and a subsequent two-semester course in 2004-2005, both at the University of Missouri-Columbia. The text is intended for a graduate student who has already had a basic introduction to functional analysis; the'aim is to give a reasonably brief and self-contained introduction to classical Banach space theory.
Banach space theory has advanced dramatically in the last 50 years and we believe that the techniques that have been developed are very powerful and should be widely disseminated amongst analysts in general and not restricted to a small group of specialists. Therefore we hope that this book will also prove of interest to an audience who may not wish to pursue research in this area but still would like to understand what is known about the structure of the classical spaces.
Classical Banach space theory developed as an attempt to answer very natural questions on the structure of Banach spaces; many of these questions date back to the work of Banach and his school in Lvov. It enjoyed, perhaps, its golden period between 1950 and 1980, culminating in the definitive books by Lindenstrauss and Tzafriri [138] and [139], in 1977 and 1979 respectively. The subject is still very much alive but the reader will see that much of the basic groundwork was done in this period.
At the same time, our aim is to introduce the student to the fundamental techniques available to a Banach space theorist. As an example, we spend much of the early chapters discussing the use of Schauder bases and basic sequences in the theory. The simple idea of extracting basic sequences in order to understand subspace structure has become second-nature in the subject, and so the importance of this notion is too easily overlooked.
It should be pointed out that this book is intended as a text for graduate students, not as a reference work, and we have selected material with an eye to what we feel can be appreciated relatively easily in a quite leisurely two-semester course. Two of the most spectacular discoveries in this area during the last 50 years are Enfio's solution of the basis problem [54] and the Gowers-Maurey solution of the unconditional basic sequence problem [71]. The reader will find discussion of these results but no presentation. Our feeling, based on experience, is that detouring from the development of the theory to present lengthy and complicated counterexamples tends to break up the flow of the course. We prefer therefore to present only relatively simple and easily appreciated counterexamples such as the James space and Tsirelson's space. We also decided, to avoid disruption, that some counterexamples of intermediate difficulty should be presented only in the last optional chapter and not in the main body of the text.
內頁插圖
目錄
;
;
前言/序言
巴拿赫空間講義(英文版) [Topics in Banach Space Theory] epub pdf mobi txt 電子書 下載 2024
巴拿赫空間講義(英文版) [Topics in Banach Space Theory] 下載 epub mobi pdf txt 電子書
巴拿赫空間講義(英文版) [Topics in Banach Space Theory] mobi pdf epub txt 電子書 下載 2024
評分
☆☆☆☆☆
巴拿赫空間
評分
☆☆☆☆☆
1909年裏斯﹐F.(F.)給齣 [0﹐1]上連續綫性泛函的錶達式﹐這是分析學曆史上的重大事件。還有一個極重要的空間﹐那就是由所有在[0﹐1]上p次可勒貝格求和的函數構成的Lp空間(1<p<∞)。在1910~1917年﹐人們研究它的種種初等性質﹔其上連續綫性泛函的錶示﹐則照亮瞭通往對偶理論的道路。人們還把弗雷德霍姆積分方程理論推廣到這種空間﹐並且引進全連
評分
☆☆☆☆☆
無窮空間
評分
☆☆☆☆☆
巴拿赫空間
評分
☆☆☆☆☆
空間簡介
評分
☆☆☆☆☆
空間簡介
評分
☆☆☆☆☆
比當當亞馬遜都便宜10塊值瞭!!!!
評分
☆☆☆☆☆
巴拿赫空間(Banach space)是一種賦有“長度”的綫性空間﹐泛函分析研究的基本對象之一。數學分析各個分支的發展為巴拿赫空間理論的誕生提供瞭許多豐富而生動的素材。從外爾斯特拉斯﹐K.(T.W.)以來﹐人們久已十分關心閉區間[a﹐b ]上的連續函數以及它們的一緻收斂性。甚至在19世紀末﹐G.阿斯科利就得到[a﹐b ]上一族連續函數之列緊性的判斷準則﹐後來十分成功地用於常微分方程和復變函數論中。
評分
☆☆☆☆☆
值得擁有
巴拿赫空間講義(英文版) [Topics in Banach Space Theory] epub pdf mobi txt 電子書 下載 2024