微分几何与积分几何(英文版) epub pdf  mobi txt 电子书 下载

微分几何与积分几何(英文版) epub pdf mobi txt 电子书 下载 2024

微分几何与积分几何(英文版) epub pdf mobi txt 电子书 下载 2024


简体网页||繁体网页
陈省身 著

下载链接在页面底部


点击这里下载
    

想要找书就要到 静思书屋
立刻按 ctrl+D收藏本页
你会得到大惊喜!!

发表于2024-11-24


商品介绍



出版社: 高等教育出版社
ISBN:9787040465181
版次:1
商品编码:12001415
包装:精装
开本:16开
出版时间:2016-10-01
用纸:胶版纸
页数:246
字数:310000
正文语种:英文

微分几何与积分几何(英文版) epub pdf mobi txt 电子书 下载 2024



类似图书 点击查看全场最低价

相关书籍





书籍描述

内容简介

  分析学包括微分学与积分学。在几何中,也有对应的微分几何和积分几何。《微分几何与积分几何(英文版)》介绍几何的这两个方面,包含四部分。第一部分内容是1971年陈省身在国际数学家大会上所做的一小时报告,向学生和非专家介绍微分几何当时的整体面貌。作者首先简要介绍历史概况,概述了一些基本概念和工具,并介绍了当时微分几何的五个分支:正曲率流形、曲率和欧拉特征、小子流形、等距映射、全纯映射。第二部分系统地介绍了积分几何。第三部分为微分流形,是作者在1959年微分几何正成为数学的一个主要领域时所写的讲义,该讲义给出了微分流形和微分几何的平稳和快速的引入,给当时的数学界送来一股清新之风。第四部分为微分几何,提供了一个高效但通俗易懂的介绍,并给出了对整个数学的全局的观点。《微分几何与积分几何(英文版)》不仅对初学者非常有价值,对科研工作者也是很好的补充阅读材料。

目录

Part Ⅰ What is Geometry and Differential Geometry
1 What Is Geometry?
1.1 Geometry as a logical system; Euclid
1.2 Coordinatization of space; Descartes
1.3 Space based on the group concept; Klein's Erlanger Programm
1.4 Localization of geometry; Gauss and Riemann
1.5 Globalization; topology
1.6 Connections in a fiber bundle; Elie Cartan
1.7 An application to biology
1.8 Conclusion
2 Differential Geometry; Its Past and Its Future
2.1 Introduction
2.2 The development of some fundamental notions and tools
2.3 Formulation of some problems with discussion of related results
2.3.1 Riemannian manifolds whose sectional curvatures keep a constant sign
2.3.2 Euler-Poincare characteristic
2.3.3 Minimal submanifolds
2.3.4 Isometric mappings
2.3.5 Holomorphic mappings

Part Ⅱ Lectures on Integral Geometry
3 Lectures on Integral Geometry
3.1 Lecture Ⅰ
3.1.1 Buffon's needle problem
3.1.2 Bertrand's parabox
3.2 Lecture Ⅱ
3.3 Lecture Ⅲ
3.4 Lecture Ⅳ
3.5 Lecture Ⅴ
3.6 Lecture Ⅵ
3.7 Lecture Ⅶ
3.8 Lecture Ⅷ

Part Ⅲ Differentiable Manifolds
4 Multilinear Algebra
4.1 The tensor (or Kronecker) product
4.2 Tensor spaces
4.3 Symmetry and skew-symmetry; Exterior algebra
4.4 Duality in exterior algebra
4.5 Inner product
5 Differentiable Manifolds
5.1 Definition of a differentiable manifold
5.2 Tangent space
5.3 Tensor bundles
5.4 Submanifolds; Imbedding of compact manifolds
6 Exterior Differential Forms
6.1 Exterior differentiation
6.2 Differential systems; Frobenius's theorem
6.3 Derivations and anti-derivations
6.4 Infinitesimal transformation
6.5 Integration of differential forms
6.6 Formula of Stokes
7 Affine Connections
7.1 Definition of an affine connection: covariant differential
7.2 The principal bundle
7.3 Groups of holonomy
7.4 Affine normal coordinates
8 Riemannian Manifolds
8.1 The parallelism of Levi-Civita
8.2 Sectional curvature
8.3 Normal coordinates; Existence of convex neighbourhoods
8.4 Gauss-Bonnet formula
8.5 Completeness
8.6 Manifolds of constant curvature

Part Ⅳ Lecture Notes on Differentiable Geometry
9 Review of Surface Theory
9.1 Introduction
9.2 Moving frames
9.3 The connection form
9.4 The complex structure
10 Minimal Surfaces
10.1 General theorems
10.2 Examples
10.3 Bernstein -Osserman theorem
10.4 Inequality on Gaussian curvature
11 Pseudospherical Surface
11.1 General theorems
11.2 Baicklund's theorem

微分几何与积分几何(英文版) epub pdf mobi txt 电子书 下载 2024

微分几何与积分几何(英文版) 下载 epub mobi pdf txt 电子书 2024

微分几何与积分几何(英文版) pdf 下载 mobi 下载 pub 下载 txt 电子书 下载 2024

微分几何与积分几何(英文版) mobi pdf epub txt 电子书 下载 2024

微分几何与积分几何(英文版) epub pdf mobi txt 电子书 下载
想要找书就要到 静思书屋
立刻按 ctrl+D收藏本页
你会得到大惊喜!!

读者评价

评分

  “艺术家的优良品质,无非是智慧、专心、真挚、意志。像一个诚实的工人一样完成你们的工作吧。”丘成桐教授特意在《数学的艺术》中提到这段罗丹的遗嘱,他认为艺术家和科学家有着同样的目标。小编在与塞尔先生因《有限群导引》一书打交道的过程中,深刻地体会到了布尔巴基学派所具备治学严谨、对一部著作要经过反复修改,直到满意为止的优良传统。

评分

还没看,。。。。。。。。。

评分

好像好像搞得好像没有呀呀呀呀呀呀呀呀

评分

书表面很脏。::。。一本白白的书,到我这竟然是黑色的

评分

大师的著作,这的收藏呀

评分

不应该把中文版的评价放在英文版的书评里,还以为有一些别的序。

评分

  塞尔先生于2015年12月将修改好的英文书稿交予我,并嘱咐我请于品老师按此进行中文翻译,在翻译过程中如果发现英文版有错误,请一定指出。

评分

讲述了微分流形和拓扑流形的结构的研究是现代数学的重要分支。随着20世纪50—60年代Milnor发现高维球面上的奇异微分结构和SmaIe证明了高维的Poincare猜想,流形拓扑学的研究进入了全新的领域,来自代数、代数拓扑和几何拓扑的诸多工具得到了广泛的应用。但是这也导致这一领域的文献较为分散和专门,不易被初学者所掌握。

评分

塞尔老爷爷的著作,每一本都值得收藏。

微分几何与积分几何(英文版) epub pdf mobi txt 电子书 下载 2024

类似图书 点击查看全场最低价

微分几何与积分几何(英文版) epub pdf mobi txt 电子书 下载 2024


分享链接









相关书籍


本站所有内容均为互联网搜索引擎提供的公开搜索信息,本站不存储任何数据与内容,任何内容与数据均与本站无关,如有需要请联系相关搜索引擎包括但不限于百度google,bing,sogou

友情链接

© 2024 book.idnshop.cc All Rights Reserved. 静思书屋 版权所有