Tom M. Mitchell,卡内基梅隆大学的教授,讲授机器学习等多门课程;美国人工智能协会(AAAL)的主席;美国 Machine Learning 杂志、国际机器学习年度会议(ICML)的创始人。
本书展示了机器学习中核心的算法和理论,并阐明了算法的运行过程。综合了许多的研究成果,例如统计学、人工智能、哲学、信息论、生物学、认知科学、计算复杂性和控制论等,并以此来理解问题的背景、算法和其中的隐含假定。
本书可作为计算机专业 本科生、研究生 教材,也可作为相关领域研究人员、教师的参考书。
##这本书是很好的 machine learing入门书,但写于1997年。虽然老是老了点,但其中对descision tree, neural network 的讲解很详细,也给出了算法发展的过程,最重要的是它处理起这两块比elements of statistical learning 要直观多了。 没有code,后面的章节可能过时了,需要参考...
评分##讲PAC的7.2章节里 英文版P207原文 This definition implicitly assumes that the learner's hypothesis space H contains a hypothesis with arbitrarily small error for every target concept in C. 本来是想表达 虽未明讲,但该定义其实做了一个假定,即对于C中每个目标概...
评分 评分##介绍了各种机器学习的模式与算法,无奈我好多都看不懂,应该去做一些实际的项目,再回过头来看看。
评分##这本书是很好的 machine learing入门书,但写于1997年。虽然老是老了点,但其中对descision tree, neural network 的讲解很详细,也给出了算法发展的过程,最重要的是它处理起这两块比elements of statistical learning 要直观多了。 没有code,后面的章节可能过时了,需要参考...
评分 评分##早期的书,有的地方太简略了
本站所有内容均为互联网搜索引擎提供的公开搜索信息,本站不存储任何数据与内容,任何内容与数据均与本站无关,如有需要请联系相关搜索引擎包括但不限于百度,google,bing,sogou 等
© 2025 book.idnshop.cc All Rights Reserved. 静思书屋 版权所有