Simon Haykin 于1953年获得英国伯明翰大学博士学位,目前为加拿大McMaster大学电子与计算机工程系教授、通信研究实验室主任。他是国际电子电气工程界的著名学者,曾获得IEEE McNaughton金奖。他是加拿大皇家学会院士、IEEE会士,在神经网络、通信、自适应滤波器等领域成果颇丰,著有多部标准教材。
本书是关于神经网络的全面的、彻底的、可读性很强的、最新的论述。全书共15章,主要内容包括Rosenblatt感知器、通过回归建立模型、最小均方算法、多层感知器、核方法和径向基函数网络、支持向量机、正则化理论、主分量分析、自组织映射、信息论学习模型、动态规划、神经动力学、动态系统状态估计的贝叶斯滤波等。
本书适合作为高等院校计算机相关专业研究生及本科生的教材,也可供相关领域的工程技术人员参考。
Provides a comprehensive foundation of neural networks, recognizing the multidisciplinary nature of the subject, supported with examples, computer-oriented experiments, end of chapter problems, and a bibliography. DLC: Neural networks (Computer science).
##神经网络不仅是现在的思维模式,计算机的将来计算模式,还是简单的细胞的运算模式。他们没有真正的思考,而是计算。计算是机器也能够做到的,因此不管人是否理解或者机器是否知道,都可以从容应对。而不知道的事物如此之多,因此不必担心他们会自动的进入圈套。他们不仅是可以...
评分 评分 评分 评分 评分 评分 评分 评分##我的研究生课程Neural Networks就是用的本书第二版。因为教授说了,他不喜欢更新的第三版。 感觉本书基本涵盖了神经网络的许多基础部分和重要方面。像Back Propagation, Radial-Basis Function,Self-Organizing Maps,以及single neuron中的Hebbian Learning, Competitive L...
本站所有内容均为互联网搜索引擎提供的公开搜索信息,本站不存储任何数据与内容,任何内容与数据均与本站无关,如有需要请联系相关搜索引擎包括但不限于百度,google,bing,sogou 等
© 2025 book.idnshop.cc All Rights Reserved. 静思书屋 版权所有