Simon Haykin 於1953年獲得英國伯明翰大學博士學位,目前為加拿大McMaster大學電子與計算機工程係教授、通信研究實驗室主任。他是國際電子電氣工程界的著名學者,曾獲得IEEE McNaughton金奬。他是加拿大皇傢學會院士、IEEE會士,在神經網絡、通信、自適應濾波器等領域成果頗豐,著有多部標準教材。
本書是關於神經網絡的全麵的、徹底的、可讀性很強的、最新的論述。全書共15章,主要內容包括Rosenblatt感知器、通過迴歸建立模型、最小均方算法、多層感知器、核方法和徑嚮基函數網絡、支持嚮量機、正則化理論、主分量分析、自組織映射、信息論學習模型、動態規劃、神經動力學、動態係統狀態估計的貝葉斯濾波等。
本書適閤作為高等院校計算機相關專業研究生及本科生的教材,也可供相關領域的工程技術人員參考。
Provides a comprehensive foundation of neural networks, recognizing the multidisciplinary nature of the subject, supported with examples, computer-oriented experiments, end of chapter problems, and a bibliography. DLC: Neural networks (Computer science).
##模仿生物的神經係統,人類開始設計製造人工神經網絡。人工神經網絡具有很多類似人腦的功能,其中就包括學習功能,也就是機器學習。 小腦在運動的控製和協調中起到瞭非常重要的作用,通常進行得非常平穩並且幾乎毫不費力。在文獻中,已經提到小腦扮演著動態估計的控製者或者神經...
評分 評分##模仿生物的神經係統,人類開始設計製造人工神經網絡。人工神經網絡具有很多類似人腦的功能,其中就包括學習功能,也就是機器學習。 小腦在運動的控製和協調中起到瞭非常重要的作用,通常進行得非常平穩並且幾乎毫不費力。在文獻中,已經提到小腦扮演著動態估計的控製者或者神經...
評分 評分##總體看來,原著的結構性是比較強的,而且原著作者是經過信號處理轉過來的,以LMS作為BP 的引導這塊感覺挺有新意,同時不僅從數學分析方法,更重要的是從貝葉斯估計入手,更容易理解機器學習是一種統計推斷,而不是看起來完美的微積分推導。但是,翻譯的人,對, 就是那個姓申的...
評分##總體看來,原著的結構性是比較強的,而且原著作者是經過信號處理轉過來的,以LMS作為BP 的引導這塊感覺挺有新意,同時不僅從數學分析方法,更重要的是從貝葉斯估計入手,更容易理解機器學習是一種統計推斷,而不是看起來完美的微積分推導。但是,翻譯的人,對, 就是那個姓申的...
本站所有内容均为互联网搜索引擎提供的公开搜索信息,本站不存储任何数据与内容,任何内容与数据均与本站无关,如有需要请联系相关搜索引擎包括但不限于百度,google,bing,sogou 等
© 2025 book.tinynews.org All Rights Reserved. 静思书屋 版权所有