偏微分方程-2
评分Halmos,Finite-Dimensional Vector Spaces。(这本书是西方世界最早的两本线性代数教材之一,是不是世界上最早的不得而知,因为俄罗斯数学大师Gelfand写的线性代数和他是同年出版。虽然现在线性代数一门很基本的课程,所有的专业都要学,但是40年代以前,数学系的课程表上是找不到线性代数这门课的,只有“方程式论”或者“高等代数”,主要是讲多项式理论和高次方程的解法之类,行列式和矩阵也是讲的,但是一般不讲线性变换、线性空间什么的。出现这本课程,很大程度上得益于泛函分析和抽象代数的出现,还有量子力学的推动。泛函分析里面的很多概念都可以看做是线性代数的进一步发展,比如线性算子、Hilbert空间等等,Halmos写这本书的目的就很明确,是要帮助学生学习泛函分析。这本书顾名思义,完全是讲线性空间为纲,我觉得这本书最大的好处就是线索清晰,非常几何化,而且篇幅很小,对代数和分析的结合比较强调,里面一些内容在现在的线性代数书里找不到,比如说里面从线性代数的角度讲了遍历理论的一些基本的内容。)
评分许以超,代数学引论/线性代数与矩阵论。(许以超老师是科大数学系的元老,科大在北京的时候,数学系的代数与解析几何这门课就是许老师讲的,这本代数学引论就是许老师当时上课的讲义,这本书除了线性代数以外,还包括解析几何和抽象代数。基本上国内的很多线性代数都是以这本书为模版的,包括科大用的那本所谓的“亚洲第一难”的书。许老师后来又写了一个改编本,去掉了解析几何和抽象代数,增加了矩阵论和张量代数的内容,就是第二本书,这本书包括了数学专业线性代数应该讲的所有内容,我以为这是国内最好的一本线性代数,无论线性空间还是矩阵论的内容都非常充实。这本书很多习题后面给了提示,大家做线性代数作业的时候有题目实在做不出来,可以翻翻,1系用的线性代数大部分的题目都可以这两本书上找到。)
评分10,弱间断解与特征曲面的关系、方程组的弱间断线、方程组的特征理论、方程组的分类、双曲型方程组的标准型、Godunov可对称化条件、对称双曲型方程组。
评分 评分4,Laplace方程Cauchy问题可解性的充要条件、调和函数族的紧性定理、Newton势、单层势、双层势、对数势、亚椭圆算子、Newton势的密度、Lyapunov曲面。
评分偏微分方程-2
评分6,固有振动、热传导方程的Green公式、热传导方程的基本解、热势、热传导方程解的分析性质、热传导方程的边值问题、热传导方程的Cauchy问题、用分离变量法解矩形区域的热传导方程。
评分5,球面平均法、Kirchhoff公式、Poisson公式、d'Aleert公式、降维法、波动方程Cauchy问题解的稳定性、波的弥散、依赖集合、Duhamel原理、波动方程的边值问题与混合问题、Goursat问题。
本站所有内容均为互联网搜索引擎提供的公开搜索信息,本站不存储任何数据与内容,任何内容与数据均与本站无关,如有需要请联系相关搜索引擎包括但不限于百度,google,bing,sogou 等
© 2025 book.idnshop.cc All Rights Reserved. 静思书屋 版权所有