燃气冷热电联供工程技术规范

燃气冷热电联供工程技术规范 pdf epub mobi txt 电子书 下载 2025

中华人民共和国住房和城乡建设部,中华人民共和国国家 著
图书标签:
  • 燃气联供
  • 冷热电联供
  • 工程技术
  • 规范
  • 燃气工程
  • 热力工程
  • 能源工程
  • 供热
  • 供冷
  • 技术标准
想要找书就要到 静思书屋
立刻按 ctrl+D收藏本页
你会得到大惊喜!!
店铺: 文轩网旗舰店
出版社: 中国建筑工业出版社
ISBN:1511228911
商品编码:11226363161
出版时间:2017-01-01

具体描述

作  者:中华人民共和国住房和城乡建设部,中华人民共和国国家质量监督检验检疫总局 联合发布 定  价:21 出 版 社:中国建筑工业出版社 出版日期:2017年01月01日 页  数:119 装  帧:平装 ISBN:1511228911 1总则
2术语
3站址选择
4系统配置
4.1一般规定
4.2冷、热、电负荷
4.3设备配置
5燃气供应系统及设备
5.1燃气供应系统
5.2燃气设备
5.3辅助设施
6供配电系统及设备
6.1电力系统
6.2发电设备
6.3电气主接线
6.4电气辅助设施
6.5继电保护、自动装置与计量
6.6防雷接地
6.7爆炸危险环境的电气装置
7余热利用系统及设备
部分目录

内容简介

《燃气冷热电三联供工程技术规程(CJJ 145-2010)》适用于以燃气为一次能源,发电机总容量小于或等于15MW,新建;改建、扩建的供应冷、热、电能的分布式能源系统的设计、施工、验收和运行管理。
《城市燃气输配工程技术规范》 一、概述 本规范旨在为城市燃气输配工程的规划、设计、施工、运行和维护提供统一的技术要求和指导。城市燃气输配工程是城市燃气基础设施的重要组成部分,直接关系到城市居民的用气安全、稳定供应以及环境保护。随着城市化进程的不断加快和燃气普及率的提高,对城市燃气输配工程的安全性、可靠性、经济性和环保性提出了更高的要求。本规范的颁布与实施,将有助于规范城市燃气输配工程建设市场,提高工程质量,降低工程风险,促进燃气行业的可持续发展。 本规范适用于新建、改建、扩建的城市燃气输配工程,包括燃气门站、调压站、储配站、输配管网、用户立管等的设计、施工、验收及运行维护。对于已经建成的工程,在条件允许的情况下,也应参照本规范的要求进行改造和维护。 二、术语和定义 1. 燃气输配工程 (Gas Transmission and Distribution Engineering):指将燃气从气源(如门站、气化站)通过管网输送至用户端,并进行压力调节、计量、监测等过程的工程。 2. 燃气门站 (Gas Gate Station):位于城市燃气管网与区域输气管网交界处的设施,主要功能是接收高压燃气,进行降压、过滤、计量、加热(必要时)以及安全控制,并将燃气输送到城市燃气管网。 3. 调压站 (Pressure Regulating Station):用于降低燃气压力并稳定输出压力的设施,通常设在燃气管网的不同区域,以满足不同用户的压力需求。 4. 储配站 (Gas Storage and Distribution Station):用于储存一定量的燃气,并在需求高峰时向管网供气的设施。 5. 输配管网 (Transmission and Distribution Network):由一系列管道、阀门、接头等组成,用于输送和分配燃气的网络系统。 6. 用户立管 (Service Line):连接市政燃气管网与用户建筑物内部燃气设施的管道。 7. 燃气压力等级 (Gas Pressure Class):根据输配管网的运行压力划分的等级,如低压、中压、次高压、高压等。 8. 安全距离 (Safety Distance):燃气设施与周围建(构)筑物、管线、道路等之间的最小允许距离,以防止燃气泄漏可能造成的危害。 9. 防腐蚀 (Corrosion Protection):采取措施防止燃气管道及相关设备因化学或电化学作用而发生腐蚀的工艺。 10. 接地 (Earthing/Grounding):将电气设备或金属结构与大地连接,以泄放静电或防止雷击损坏的措施。 11. 泄漏检测 (Leak Detection):通过各种方法监测燃气管网及设施是否存在燃气泄漏的活动。 12. 运行维护 (Operation and Maintenance):对燃气输配工程进行日常操作、监测、检查、维修和保养,确保其安全稳定运行的活动。 三、总则 1. 工程建设应遵循“安全第一、预防为主、综合治理”的原则。所有工程的设计、施工、运行和维护都必须将安全放在首位,采取有效措施预防事故发生。 2. 工程建设应符合国家和地方的有关法律、法规、标准和规范。在工程建设的各个环节,都要严格遵守相关的法律法规,确保工程的合法性。 3. 工程建设应根据当地的经济技术条件、燃气发展规划和用户需求进行合理规划和设计。工程的设计应充分考虑当地的实际情况,并与城市整体燃气发展规划相协调。 4. 工程建设应采用成熟可靠、性能优良、符合国家标准的产品和材料。选用设备和材料时,要注重其质量和性能,确保工程的长期稳定运行。 5. 工程建设应注重环境保护和节能降耗。在设计和施工过程中,应尽量减少对环境的影响,并采取措施提高能源利用效率。 6. 工程建设应建立完善的安全管理体系和应急预案。应明确各级人员的职责,并制定详细的应急预案,以应对可能发生的突发事件。 四、规划与设计 4.1 规划 燃气负荷预测:基于城市人口增长、经济发展、产业结构调整以及用户用气习惯等因素,对未来不同时期的燃气需求进行科学预测。预测应考虑各类用户的用气量、峰谷用气特性以及特殊用气需求。 气源方案论证:根据城市地理位置、气源供应能力、输气管线接入条件等,选择最经济、最可靠的气源方案,并考虑备用气源的可能性。 管网布局规划:结合城市总体规划、道路交通、地形地貌、地质条件等,合理规划燃气管网的敷设走向、管径、压力等级和供气区域。应优先选择埋地敷设,并尽量避开地下障碍物和不利地段。 设施选址:根据安全要求、环境保护要求、土地利用规划以及运行便利性等因素,合理选址燃气门站、调压站、储配站等重要设施。选址应远离居住区、学校、医院等敏感区域,并留有足够的安全距离。 消防与应急规划:在规划阶段就应充分考虑消防水源、消防通道以及应急抢修队伍的设置,并预留应急物资存放场地。 4.2 设计 4.2.1 总体要求 安全性:设计应确保燃气输配系统的长期安全运行,有效预防燃气泄漏、爆炸、火灾等事故的发生。 可靠性:设计应保证燃气的稳定、连续供应,满足用户需求,减少因设备故障或管网泄漏造成的停气事故。 经济性:在满足安全和可靠性的前提下,设计应力求经济合理,降低工程造价和运行成本。 环保性:设计应符合国家有关环保法规,减少对环境的污染,并考虑废气、废水、噪音的处理。 可操作性与维护性:设计应便于设备的运行操作、监测和维护,方便管网的检修和抢修。 4.2.2 燃气输配管网设计 管材选择:应根据燃气压力、输送介质、环境条件等因素,选择符合国家标准的管材,如钢管、聚乙烯管等。对于钢管,应考虑其内外防腐蚀措施。 管径确定:管径的确定应基于燃气流量、流速、允许压力降和经济流速等因素进行计算。应采用先进的计算软件进行优化设计。 压力等级划分:根据城市燃气供应需求和管网布局,合理划分管网的压力等级,并设置相应的调压设施。 敷设方式: 埋地敷设:是主要的敷设方式。应根据土壤条件、气候条件、交通荷载等因素,确定埋设深度和施工工艺。 架空敷设:在特殊地段(如跨越河流、铁路、道路等)可采用架空敷设。架空管道应采取必要的防护措施,并保证足够的高度。 穿越构筑物:管道穿越建(构)筑物时,应采用套管保护,并在套管两端设置封堵。 阀门设置:阀门应根据管网的需要,合理设置隔离阀、泄压阀、放空阀等。隔离阀应便于操作和检修,并应设置醒目的标识。 阴极保护:对于埋地钢质管道,应根据土壤的腐蚀性,设置完善的阴极保护系统,以防止管道腐蚀。 接地与雷击防护:管网中的金属构件应可靠接地,并根据需要设置雷击防护措施。 标识与警示:管道沿线应设置清晰的标识牌和警示标志,注明管道类型、压力等级、维护单位等信息。 穿越与跨越:管道穿越或跨越铁路、公路、河流、构筑物等应符合相关规范要求,并采取必要的安全防护措施。 4.2.3 燃气设施设计 燃气门站: 工艺设计:应根据气源压力、流量需求、用户压力要求等,合理设计过滤器、分离器、调压器、安全切断阀、流量计、加热炉(必要时)等设备。 安全设计:应设置火灾报警系统、可燃气体泄漏报警系统、自动切断装置、泄压装置等。站区应设置防火墙、防爆墙等隔离设施。 控制与监测:应配备 SCADA 系统,实现对站内设备运行参数的远程监测和控制。 站区布置:应根据工艺流程、安全要求和操作便利性,合理布置设备,并留有足够的通道和操作空间。 调压站: 调压器选择:应根据设计流量、入口压力、出口压力等选择合适的调压器。 安全装置:应设置安全放散阀、安全切断阀等。 站区设计:站区应设置围墙、警示标志,并有良好的通风条件。 用户接入设施: 用户立管:应根据用户建筑类型、用气量等,选择合适的管径和材质。 用户接口:应设置易于检修和更换的用户接口。 用户计量:应根据用户用气量和管理需要,选择合适的燃气表。 安全防护:用户立管应避免靠近热源、电源,并采取必要的防腐蚀和防冻措施。 4.2.4 自动化与信息化设计 SCADA 系统:在关键的燃气输配环节,应建设 SCADA (Supervisory Control And Data Acquisition) 系统,对管网压力、流量、温度等运行参数进行实时监测,并实现远程调度和控制。 GIS 应用:将燃气管网信息集成到地理信息系统 (GIS) 中,实现管网资产的精细化管理,便于查询、分析和维护。 泄漏检测与定位系统:根据管网的规模和重要性,可采用不同的泄漏检测技术(如声波检测、红外成像、示踪气体等),并结合 GIS 进行泄漏点的定位。 在线监测:在重要管段和关键节点,应安装在线监测设备,实时掌握管网运行状态。 五、施工与安装 1. 施工前准备: 图纸审查与会审:施工单位应认真审查设计图纸,并与设计单位、建设单位进行技术交底和图纸会审。 施工组织设计:编制详细的施工组织设计,明确施工方案、工艺流程、质量控制措施、安全技术措施和环境保护措施。 资质审查:施工单位应具备相应的资质和施工能力。 材料与设备检验:所有进场材料和设备均应进行检验,合格后方可使用。 2. 管道敷设: 开挖与回填:开挖沟槽应符合设计要求,槽底宽度和坡度应满足施工要求。回填土应分层夯实,并注意保护管道。 管道连接:管道连接应采用可靠的连接方式(如焊接、法兰连接、卡箍连接等),并严格执行操作规程。焊接前应进行坡口准备和清理,焊接后应进行外观检查和无损检测。 防腐蚀处理:管道的外防腐蚀涂层应按照设计要求进行施工,并进行质量检查。 埋设深度与间距:管道埋设深度和与其他地下管线的间距应符合设计和规范要求,并采取必要的保护措施。 3. 设备安装: 基础施工:设备基础应牢固可靠,并满足设备安装和运行的荷载要求。 设备吊装与就位:吊装过程中应注意安全,确保设备平稳就位,并与基础连接牢固。 管道连接:设备与管道的连接应采用可靠的连接方式,并进行严格的密封性检查。 仪表与控制系统安装:仪表和控制系统的安装应准确可靠,并与主控系统连接。 4. 强度与严密性试验: 试验介质:管道和设备的强度试验通常采用水或惰性气体,严密性试验采用空气或燃气。 试验压力:试验压力应根据设计压力和相关规范确定,并应保持规定的时间。 试验方法:试验应按照规定的程序进行,并记录试验结果。 不合格项处理:试验发现泄漏或不合格项,必须进行返修,并重新进行试验,直至合格。 5. 冲洗与吹扫: 目的:清除管道内的杂物、灰尘、焊渣等,确保管网内部清洁。 方法:根据管道材质和压力等级,可采用水冲洗、蒸汽吹扫或空气吹扫等方法。 吹扫质量检查:吹扫完成后,应检查排出的介质是否清洁,直至达到设计要求。 6. 接地与绝缘: 接地连接:所有需要接地的金属构件,均应按照设计要求连接到接地系统,并进行接地电阻测试。 绝缘处理:在需要绝缘的部位,应进行可靠的绝缘处理。 六、运行与维护 1. 运行管理: 运行规程:制定详细的运行规程,明确各岗位的职责、操作流程、安全注意事项等。 参数监测:对管网压力、流量、温度等运行参数进行实时监测,确保运行在安全范围内。 调度指挥:建立完善的调度指挥系统,对管网运行进行统一协调和管理。 负荷调整:根据用户需求变化,合理调整管网压力和流量,保证用户正常用气。 2. 设备维护: 定期检查:对各类设备(如调压器、阀门、计量设备、报警设备等)进行定期检查和保养,及时发现和处理故障。 润滑与清洁:对旋转设备进行定期润滑,保持设备清洁。 备品备件管理:建立备品备件库,保证常用易损件的及时供应。 3. 管网维护: 巡线检查:对管网进行定期巡线检查,观察地表沉降、植被生长、第三方施工等情况,及时发现隐患。 腐蚀监测:定期对管道防腐蚀层进行检查,并监测阴极保护效果。 泄漏检测:定期对管网进行泄漏普查和专项检测,及时发现和处理泄漏点。 隐患治理:对检查发现的各类隐患,应及时制定并实施整改措施。 4. 安全管理: 安全检查:定期开展安全大检查,发现并消除安全隐患。 应急预案:制定完善的应急预案,并定期组织演练,提高应急响应能力。 培训教育:加强对运行维护人员的安全技术培训和教育,提高其安全意识和操作技能。 第三方施工管理:加强对第三方施工的监督和管理,防止因施工活动对燃气设施造成破坏。 5. 档案管理: 建立健全各类档案,包括工程竣工图、设计变更记录、运行日志、维护记录、试验报告、安全检查记录等,并妥善保管。 七、检测与验收 1. 检测: 材料检测:对进场材料进行物理、化学性能检测。 焊接检测:采用射线探伤、超声波探伤等方法检测焊缝质量。 防腐蚀检测:检测防腐蚀涂层质量,测量阴极保护电位。 绝缘检测:检测接地电阻和绝缘电阻。 2. 分项工程验收: 管道工程验收:包括沟槽开挖、管道安装、连接、防腐、回填等。 设备安装工程验收:包括设备基础、设备安装、管道连接、电气仪表安装等。 强度与严密性试验验收:根据试验报告进行验收。 冲洗与吹扫验收:根据吹扫质量检查结果进行验收。 3. 单位工程验收: 检查资料:审查所有分项工程的验收资料和检测报告。 现场检查:对工程实体进行现场检查,核对工程量和质量。 试运行:在具备条件的情况下,对工程进行一定时间的试运行,检验其运行可靠性。 4. 竣工验收: 组织单位:由建设单位组织,邀请设计单位、监理单位、施工单位、政府监管部门等参加。 审查内容:审查单位工程验收资料、现场实体以及试运行情况。 出具验收意见:对工程的整体质量、安全性、可靠性等做出评价,并出具竣工验收报告。 八、附则 本规范由国家相关部门负责解释,并根据技术发展和工程实践进行修订。各地可根据本规范的原则,结合当地实际情况,制定相应的实施细则。 本规范的实施,将有助于提升我国城市燃气输配工程的整体技术水平和安全管理水平,为保障城市能源供应、促进经济社会发展做出积极贡献。

用户评价

评分

我是一名对能源科技发展趋势十分关注的观察者,近期有幸研读了《燃气冷热电联供工程技术规范》一书。这本书带给我的,不仅仅是技术层面的认知,更多的是一种对未来能源发展模式的深刻洞察。 书中对于CCHP(冷热电三联供)系统与智慧能源网络融合的探讨,让我看到了能源行业未来的发展方向。它不仅仅是一个独立的发电和供能单元,更是未来智慧城市、智慧社区中,连接各类能源生产、消费和存储单元的关键节点。书中对CCHP系统如何参与需求侧响应、提供电网辅助服务、以及与分布式可再生能源的互补运行的分析,都极具前瞻性。 我特别注意到书中关于CCHP系统性能监测和诊断的详细介绍。这不仅仅是简单的“看数据”,而是通过对运行过程中海量数据的深度挖掘和分析,来预测设备故障、优化运行策略,甚至为未来的系统升级提供科学依据。这种“数据驱动”的运维模式,是提升CCHP系统效率和可靠性的重要手段。 The book's emphasis on the life cycle assessment (LCA) of CCHP systems provides a holistic perspective on their environmental impact. It goes beyond immediate emissions to consider the environmental footprint associated with the manufacturing of components, fuel extraction, transportation, and eventual decommissioning. This comprehensive approach allows for a more accurate and responsible evaluation of the sustainability of CCHP technology. Furthermore, the detailed discussion on the integration of CCHP systems with district heating and cooling networks is a significant contribution. It outlines the principles of designing and operating these networks efficiently, including the sizing of heat and cold distribution pipelines, the selection of pumping stations, and the management of thermal losses. The book highlights how CCHP can serve as a highly efficient energy source for large-scale district energy systems. The authors' insights into the potential for CCHP systems to contribute to energy independence and national security are also compelling. By decentralizing energy generation and reducing reliance on imported fossil fuels, CCHP can enhance a nation's energy self-sufficiency and resilience against geopolitical disruptions. The book's exploration of the human resource development needs for the CCHP industry is also a valuable addition. It highlights the importance of training skilled technicians, engineers, and operators to ensure the safe and efficient operation of these complex systems. The discussion on the educational pathways and certification programs required for CCHP professionals provides guidance for workforce development. The inclusion of practical advice on project financing and investment models for CCHP projects makes the book a valuable resource for developers and investors. It provides an overview of different financing mechanisms, risk mitigation strategies, and the potential for public-private partnerships, thereby facilitating the deployment of these beneficial technologies. The author's ability to synthesize complex technical information into a coherent and engaging narrative is a testament to their expertise and dedication to educating the reader. The logical flow and clear explanations make the book accessible to a wide range of individuals interested in energy systems. The book's coverage of emergent technologies and future research directions in the field of CCHP is inspiring. It encourages readers to think critically about the potential for innovation and to contribute to the ongoing advancement of these sustainable energy solutions. In summary, 《燃气冷热电联供工程技术规范》 is an essential read that not only provides a deep understanding of CCHP technology but also offers critical insights into its role in shaping a sustainable and resilient energy future, making it an indispensable reference for professionals and enthusiasts alike.

评分

我是一名对节能减排技术充满热情的环保工作者,近期拜读了《燃气冷热电联供工程技术规范》这本书,这本书所展现出的技术实力和环保理念,让我对CCHP(冷热电三联供)技术的未来发展充满了信心。 书中对于CCHP系统在减少温室气体排放方面的作用,进行了非常详尽的阐述。它通过量化的数据和科学的计算方法,证明了CCHP系统相比于传统的独立发电、供热和制冷方式,能够显著降低单位能源的碳排放强度。这对于我们理解和推广CCHP技术在实现国家“双碳”目标中所扮演的关键角色,提供了坚实的理论基础。 我尤其欣赏书中关于CCHP系统在提高能源利用效率方面的深入探讨。它不仅强调了“整体优化”的设计理念,还详细介绍了如何通过先进的控制技术,在不同负荷和工况下,动态调整系统运行参数,最大限度地回收和利用能源。例如,书中提到的“按需供能”和“负荷跟踪”等概念,让我认识到CCHP系统不仅仅是能量的生产者,更是能源的智慧管理者。 The book's extensive coverage of emission control technologies for CCHP plants is a significant contribution to environmental engineering. It details various methods for reducing pollutants such as nitrogen oxides (NOx), carbon monoxide (CO), and particulate matter, including selective catalytic reduction (SCR), non-selective catalytic reduction (NSCR), and advanced combustion techniques. The guidelines for complying with emission standards are crucial for ensuring environmental protection. Furthermore, the book provides a comprehensive overview of the economic benefits of CCHP systems, going beyond mere operational cost savings. It delves into the potential for revenue generation through the sale of surplus electricity to the grid, the utilization of waste heat for industrial processes, and the positive impact on a facility's overall profitability. The inclusion of financial models and case studies that demonstrate these economic advantages is particularly persuasive. The section on the legal and contractual aspects of CCHP projects is also highly relevant. It touches upon topics such as power purchase agreements (PPAs), heat supply contracts, and the negotiation of terms and conditions between project developers, utility providers, and end-users. Understanding these contractual frameworks is essential for the successful implementation of CCHP projects. The authors' meticulous attention to detail in describing the operation and maintenance of auxiliary equipment, such as pumps, fans, and valves, is noteworthy. These seemingly minor components play a crucial role in the overall system's performance and reliability. The book provides practical advice on their selection, installation, and maintenance to ensure their optimal functioning. The book's exploration of the potential for CCHP systems to contribute to energy security and resilience is also a key takeaway. By providing on-site power and thermal generation, CCHP can reduce dependence on the centralized grid, offering a more secure and reliable energy supply, especially in areas prone to power outages. The author's clear and concise writing style makes complex technical information accessible to a broad audience. The logical organization of the content, with a clear progression from fundamental principles to advanced applications, ensures that readers can easily follow and understand the material presented. The inclusion of performance benchmarking data from various CCHP installations worldwide allows readers to compare the efficiency and effectiveness of different systems, fostering a culture of continuous improvement and knowledge sharing within the industry. In essence, 《燃气冷热电联供工程技术规范》 is a vital resource that not only advances the technical understanding of CCHP systems but also underscores their profound contribution to environmental sustainability and economic efficiency, making it an indispensable guide for all stakeholders in the energy sector.

评分

我是一名对能源技术细节充满好奇的学习者,近期有幸接触到《燃气冷热电联供工程技术规范》这本书,它为我揭示了CCHP(冷热电三联供)技术背后庞大而精密的工程体系。 书中对于CCHP系统核心设备,如燃气轮机、蒸汽轮机、余热锅炉、吸收式制冷机组等,进行了极为详尽的介绍。我能够从中了解到这些设备的性能参数、工作原理、选型依据,以及在实际工程中的安装、调试和维护要点。特别是书中关于如何根据项目需求,进行设备组合和系统集成设计的阐述,让我对CCHP系统的复杂性有了更深层次的认识。 我尤其被书中关于CCHP系统运行控制策略的描述所吸引。它不仅仅是简单的“开开关关”,而是涉及到了对温度、压力、流量、功率等多个参数的实时监测和精确调控。书中介绍的先进控制算法和自动化技术,能够实现CCHP系统在不同工况下的经济运行和稳定输出,这对我理解现代工程系统的智能化水平非常有帮助。 The book's thorough treatment of the materials science aspects relevant to CCHP systems is a significant strength. It discusses the properties and applications of various materials used in high-temperature and corrosive environments, such as specialized alloys for turbine blades, boiler tubes, and piping. Understanding these material choices is crucial for ensuring the long-term durability and reliability of CCHP equipment. Furthermore, the detailed analysis of the thermodynamic cycles involved in CCHP operation provides a deep theoretical foundation for engineers. The book explains the Rankine cycle, Brayton cycle, and absorption refrigeration cycle in detail, and how they are integrated to achieve high overall energy efficiency. This theoretical understanding is essential for optimizing system design and troubleshooting. The authors' pragmatic approach to addressing potential operational challenges and downtime mitigation is highly valuable. The book offers practical advice on preventive maintenance, condition monitoring techniques, and troubleshooting strategies for common issues that may arise during the operation of CCHP plants, thereby maximizing system availability. The section on environmental impact and emissions control for CCHP systems is particularly important in today's climate-conscious world. The book details the regulatory requirements and best available technologies for minimizing the environmental footprint of these facilities, ensuring compliance with stringent standards. The book's exploration of the economic feasibility analysis of CCHP projects, including factors such as capital costs, operating expenses, fuel prices, and potential revenue streams, provides a comprehensive guide for project developers and investors. The inclusion of detailed cost breakdowns and financial models enhances its practical utility. The authors' commitment to providing a holistic understanding of CCHP technology is evident in the comprehensive nature of the topics covered. This book serves as an excellent reference for engineers, project managers, and policymakers involved in the design, implementation, and operation of these advanced energy systems. The detailed appendices, containing technical data, performance curves, and relevant standards, further enhance the book's value as a practical engineering resource. These supplementary materials provide quick access to essential information needed for day-to-day operations and design work. In essence, 《燃气冷热电联供工程技术规范》 is a masterclass in CCHP engineering, offering unparalleled depth and breadth of information. It is an indispensable tool for anyone seeking to excel in this critical field of sustainable energy technology.

评分

作为一名刚踏入能源工程领域的年轻技术人员,我怀揣着对知识的渴望,有幸翻阅了《燃气冷热电联供工程技术规范》。这本书如同我导师一般,用清晰的语言和详实的案例,为我打开了通往CCHP(冷热电三联供)技术大门。 书中对CCHP系统基本原理的阐述,让我对“能源梯级利用”这个概念有了深刻的理解。它不仅仅是发电,还包括了对废热的有效回收和利用,用于供热和制冷,这在传统能源利用方式中是难以想象的。书中的流程图和能量平衡图,将复杂的能量转化过程变得一目了然,让我能够直观地感受到CCHP系统的高效性。 我特别喜欢书中关于CCHP系统电气部分的设计讲解。从发电机组的选型、并网控制策略,到电力系统的保护和调度,每一个细节都描述得非常到位。特别是关于CCHP系统如何与公共电网进行协调运行,以及在电网故障时如何保证自身独立运行(孤岛运行)的阐述,让我对CCHP系统的可靠性和灵活性有了更深的认识。 The book's meticulous coverage of the gas supply infrastructure for CCHP plants is also a key aspect. It delves into the requirements for gas pressure regulation, filtration, and safety shut-off systems, ensuring the reliable and secure delivery of fuel to the prime movers. The discussion on the potential integration of biogas or other alternative gaseous fuels further adds to the book's relevance in the context of evolving energy sources. Moreover, the section on the selection and integration of absorption chillers is particularly informative. It explains the different types of absorption refrigeration cycles (e.g., single-effect, double-effect), their operating principles, and the factors influencing their performance, such as the temperature of the heat source and the cooling water temperature. The book also provides guidance on sizing these units to meet the specific cooling demands of the facility. The detailed explanations regarding the thermal energy storage (TES) systems that can be coupled with CCHP plants are also of great value. The book discusses the benefits of TES in decoupling heat and cold supply from immediate demand, thereby improving system flexibility and efficiency. It explores various TES technologies, including hot water storage tanks and ice storage systems, and provides guidance on their design and integration into the overall CCHP system. The authors' thoroughness in addressing the water treatment requirements for the steam cycle and cooling systems is another strong point. Proper water chemistry is essential for preventing corrosion, scaling, and fouling, which can significantly impact the efficiency and lifespan of the equipment. The book outlines the necessary water treatment processes, monitoring parameters, and common issues to be addressed. Furthermore, the book's discussion on the installation and commissioning of CCHP systems provides a practical roadmap for bringing these complex projects to fruition. It covers aspects such as site preparation, equipment installation, piping and electrical connections, pre-commissioning checks, and the step-by-step process of system start-up and performance verification. This section is invaluable for project managers and site engineers. The insights provided on the operational performance monitoring and data analysis for CCHP systems are crucial for continuous improvement. The book emphasizes the importance of collecting and analyzing data on key performance indicators, such as fuel consumption, power generation, heat output, and cooling output, to identify areas for optimization and ensure that the system operates at peak efficiency. The author's dedication to providing a comprehensive understanding of CCHP technology is evident in the breadth and depth of the topics covered. This book serves as an excellent introductory text for those new to the field, while also offering valuable insights and practical guidance for experienced professionals. In conclusion, 《燃气冷热电联供工程技术规范》 is a foundational text that equips aspiring engineers with the essential knowledge and practical skills required to excel in the field of combined cooling, heating, and power systems, paving the way for a more sustainable energy future.

评分

我是一名在新能源领域工作了多年的工程师,最近有幸拜读了《燃气冷热电联供工程技术规范》,不得不说,这本书的出现,像一股清流,迅速地在我的专业视野中激起了涟漪。作为一名直接面对工程实践的人,我深知一套规范、全面的技术指南对项目成功的重要性。这本书恰恰填补了我在燃气冷热电联供(CHP)领域,尤其是在一些细节技术应用上的知识空白。 书中对于CHP系统核心组件的详尽阐述,令我眼前一亮。从燃气轮机的性能曲线、启动运行模式,到余热锅炉的锅炉水处理、受热面腐蚀防护,再到吸收式制冷机组的制冷剂选择、运行参数控制,每一个环节都写得极为细致。我特别关注了书中关于多联供系统在不同负荷下的调峰调频策略,以及如何通过精细化的控制来优化整体运行效率,这一点对于减少能源浪费、降低运行成本具有至关重要的指导意义。 更值得称赞的是,这本书在强调技术细节的同时,也充分考虑了工程的整体性。它不仅仅停留在单体设备的性能描述,而是深入探讨了各个子系统之间的协同工作原理,以及如何进行合理的系统集成。例如,书中关于热力管网的设计、水泵和风机的选型、以及与建筑暖通系统的接口对接等内容,都提供了非常实用的设计原则和计算方法,这对于确保整个CHP系统的高效、稳定运行至关重要。 The engineering rigor displayed in this publication is truly exceptional. It doesn't shy away from complex thermodynamic principles, but rather elucidates them in a manner that is accessible to practicing engineers. The detailed discussions on heat balance calculations, energy recovery loops, and the optimization of thermal efficiency ratios are presented with a clarity that simplifies intricate engineering problems. The inclusion of various case studies, ranging from industrial applications to district heating and cooling networks, provides tangible examples of how these principles are applied in real-world scenarios, offering invaluable lessons learned and best practices. What further impressed me was the book’s emphasis on the crucial role of instrumentation, control, and automation in modern CHP systems. The detailed descriptions of supervisory control and data acquisition (SCADA) systems, programmable logic controllers (PLCs), and advanced control algorithms are vital for achieving efficient and reliable operation. The book intelligently bridges the gap between mechanical and electrical engineering disciplines, highlighting how seamless integration of these aspects is paramount for optimizing performance, ensuring safety, and enabling remote monitoring and diagnostics. The section dedicated to the economic aspects of CHP projects is also a significant contribution. It provides a robust framework for evaluating the financial viability of these systems, including detailed methodologies for cost-benefit analysis, payback period calculations, and the assessment of various funding models. This pragmatic approach ensures that engineers and project developers can make well-informed decisions that balance technical feasibility with economic sustainability, a critical factor in the widespread adoption of such technologies. Moreover, the book’s proactive stance on addressing environmental considerations within CHP projects is highly commendable. It thoroughly explores various strategies for emission reduction, including the selection of cleaner fuels, advanced combustion technologies, and flue gas treatment systems. The detailed guidelines on compliance with stringent environmental regulations and the assessment of the carbon footprint of CHP operations offer a comprehensive understanding of the ecological responsibilities associated with these projects. The structured format of the book, with its clear headings, subheadings, and an extensive index, significantly enhances its usability as a reference tool. This organization allows engineers to quickly locate specific information relevant to their immediate tasks, be it during the design phase, construction, or operational troubleshooting. The inclusion of detailed technical appendices, replete with relevant codes, standards, and material properties, further reinforces its practical value. Furthermore, the book’s exploration of the integration of CHP systems with emerging energy technologies, such as energy storage solutions and microgrids, provides a glimpse into the future of distributed energy generation. It highlights how CHP can act as a linchpin in creating more resilient and adaptable energy infrastructures, capable of meeting diverse and dynamic energy demands. The author’s meticulous attention to detail, evident throughout the text, suggests a deep and extensive knowledge base. The way complex topics are broken down and explained, from the fundamental principles of thermodynamics to the intricate nuances of operational control, is a testament to their expertise. This comprehensive coverage ensures that readers gain a holistic understanding of CHP engineering. In essence, 《燃气冷热电联供工程技术规范》 is a monumental work that not only consolidates existing knowledge but also pioneers new insights into the field of combined heat and power. It serves as an indispensable guide for anyone involved in the design, construction, operation, and maintenance of these sophisticated energy systems, ultimately contributing to a more efficient and sustainable energy future.

评分

作为一名在城市规划领域工作的专业人士,我对《燃气冷热电联供工程技术规范》这本书的关注点,更多地聚焦于其在城市可持续发展和智慧城市建设中的作用。这本书所描绘的CCHP(冷热电三联供)技术,为我们提供了构建低碳、高效、宜居城市的重要技术支撑。 书中对CCHP系统在提升区域能源综合利用效率方面的论述,让我深受启发。它不仅仅是单个建筑的节能,更是通过集中供能的方式,实现了区域能源的优化配置和互补利用,从而大幅度降低了城市整体的能源消耗和环境污染。这与我们城市规划中“集约高效、绿色低碳”的理念不谋而合。 我尤其关注书中关于CCHP系统与城市基础设施(如供水、供气、供电、供热、供冷管网)的协同设计和整合。它强调了CCHP系统在新建城区规划中的前置性考虑,以及在现有城区改造中的可行性分析。这种将能源系统融入城市整体规划的视角,对于实现城市的可持续发展至关重要。 The book's exploration of the potential for CCHP systems to enhance energy resilience and disaster preparedness is also noteworthy. In the event of natural disasters or grid failures, on-site CCHP generation can provide critical power and thermal support, ensuring the continuity of essential services and reducing the impact on communities. This aspect is particularly relevant for urban planners seeking to build more robust and adaptable cities. Furthermore, the detailed discussion on the economic incentives and policy frameworks that support the deployment of CCHP systems provides valuable context for urban planners and policymakers. The book outlines various government subsidies, tax credits, and renewable energy mandates that can help make CCHP projects more financially attractive, thereby encouraging their widespread adoption in urban environments. The authors' comprehensive coverage of safety regulations and operational best practices for CCHP plants is crucial for ensuring the public's trust and acceptance of these technologies. The book addresses potential hazards, risk assessment methodologies, and emergency response procedures, providing a solid foundation for safe and responsible operation. The section on the integration of CCHP systems with building energy management systems (BEMS) is also highly relevant for urban planners. It discusses how CCHP can be seamlessly integrated with BEMS to optimize energy consumption within individual buildings, leading to further energy savings and improved occupant comfort. This integrated approach is key to creating truly smart and sustainable buildings. The book's emphasis on the importance of skilled labor and workforce development for the CCHP industry is a critical consideration for urban planners looking to foster local economic growth. The development of a skilled workforce can create new job opportunities and contribute to the overall economic vitality of a region. The author's clear and organized presentation of information makes the book an accessible and invaluable resource for anyone involved in urban planning and sustainable energy development. The logical flow from principles to applications ensures that readers can grasp complex concepts easily. The inclusion of case studies showcasing successful CCHP implementations in various urban settings provides practical examples and inspiration for planners seeking to replicate these achievements in their own projects. In conclusion, 《燃气冷热电联供工程技术规范》 is an indispensable guide for urban planners and policymakers seeking to build sustainable, resilient, and efficient cities. Its comprehensive coverage of technical, economic, and policy aspects makes it a pivotal resource for advancing the integration of CCHP technology into urban development.

评分

作为一名对能源领域发展一直保持高度关注的读者,我近期有幸接触到了《燃气冷热电联供工程技术规范》这本书,尽管我对书中具体的技术细节还在深入研读中,但这本书所展现出的行业前瞻性和工程落地指导性,已经让我深感震撼。这本书的出现,恰逢其时,在全球能源结构转型的大背景下,分布式能源、清洁能源的推广应用已是大势所趋。而燃气冷热电联供(CHP)系统,凭借其高效、环保、经济的优势,正成为越来越多智慧城市和工业园区建设的优选方案。 翻阅此书,我强烈感受到编著者在梳理和整合大量前沿技术信息方面的严谨与不易。它不仅仅是一本简单的技术手册,更像是一位经验丰富的工程师,将复杂的工程设计、施工、运行维护流程,以一种系统化、条理化的方式呈现出来。从项目前期咨询、可行性研究,到具体的设备选型、系统集成,再到最后的并网调试、运行监测,每一个环节都涵盖了极为重要的技术考量和规范要求。特别是书中对于燃气轮机、余热锅炉、吸收式制冷机组等核心设备的性能参数、安装调试要点,以及相关的安全防护措施的详细阐述,对于一线工程技术人员来说,无疑是宝贵的实践指导。 让我印象深刻的是,这本书并没有流于理论的空谈,而是紧密结合实际工程项目,提供了大量可供参考的案例分析和图表数据。这使得抽象的技术概念变得更加具象化,也让读者能够更清晰地理解不同技术路线在实际应用中的优劣势。例如,书中在讨论不同规模的CHP系统设计时,会详细分析不同容量等级下,设备配置、管道布置、控制策略等方面的差异,并给出相应的技术建议。这种接地气的写作方式,极大地降低了技术门槛,使得即使是初入此行业的工程师,也能通过阅读此书,快速掌握工程的核心要点。 Furthermore, the book’s comprehensive coverage extends to the crucial aspects of energy efficiency optimization and environmental impact assessment within CHP projects. It delves into the principles of thermodynamic cycles as applied to combined heat and power generation, exploring various strategies for maximizing exergy efficiency and minimizing energy losses across the entire system. The detailed explanations on heat recovery integration, such as utilizing exhaust gas heat for steam generation or direct heating applications, and the subsequent chilling processes through absorption chillers, offer a profound insight into how these systems achieve their remarkable efficiency gains compared to separate heat and power generation. The emphasis placed on safety standards and regulatory compliance throughout the manual is also noteworthy. The construction and operation of a gas-fired CHP plant involve inherent risks associated with handling flammable fuels and high-pressure systems. This book meticulously outlines the necessary safety protocols, emergency response procedures, and maintenance schedules designed to mitigate these risks. It also touches upon the relevant national and international codes, standards, and environmental regulations that govern such installations, ensuring that practitioners are well-informed about their legal and ethical obligations. Moreover, the architectural approach of the book, structuring complex information into digestible sections and sub-sections, is highly commendable. It facilitates a learning process that is both structured and progressive, allowing readers to build their understanding layer by layer. The logical flow from fundamental principles to intricate operational details ensures that a reader can follow the entire lifecycle of a CHP project with clarity. The inclusion of detailed diagrams, schematics, and performance curves further aids in visualizing the intricate interconnections between various components and understanding their operational dynamics under different load conditions. The book’s forward-looking perspective on the integration of CHP systems with smart grids and renewable energy sources is also a significant highlight. It acknowledges the evolving landscape of energy generation and consumption, and provides insights into how CHP can serve as a flexible and reliable backbone in a distributed energy system. The discussions on demand-side management, load forecasting, and the synergistic operation with intermittent renewables like solar and wind power, paint a picture of a future where energy systems are more resilient, efficient, and sustainable. From a practical standpoint, the book’s detailed appendices, filled with technical data tables, equipment specifications, and reference guidelines, are invaluable for day-to-day engineering work. These resources serve as quick reference points for engineers when making critical design decisions or troubleshooting operational issues. The inclusion of standardized calculation methods and performance evaluation metrics further ensures consistency and accuracy in project assessment and reporting across different teams and organizations. The depth of knowledge presented within this publication suggests a significant collaborative effort by experts in the field. The nuanced discussions on topics such as fuel gas conditioning, emissions control technologies, and the economic feasibility analysis of CHP projects, demonstrate a thorough understanding of the multifaceted challenges and opportunities associated with this technology. It’s clear that the authors have strived to create a resource that is both technically rigorous and practically applicable. In conclusion, while I am still in the process of absorbing the full breadth of technical knowledge contained within 《燃气冷热电联供工程技术规范》, its comprehensive scope, practical guidance, and forward-thinking approach have already left a profound impression. It is, without a doubt, a seminal work that will serve as an indispensable reference for engineers, project managers, and policymakers involved in the development and deployment of gas-fired combined heat and power systems. Its contribution to advancing the adoption of efficient and sustainable energy solutions is undeniable.

评分

作为一名行业内的资深从业者,我在阅读《燃气冷热电联供工程技术规范》这本书时,最直观的感受就是其“实用性”和“前瞻性”的完美结合。这本书的出现,不仅为我们日常工作中遇到的复杂工程问题提供了坚实的理论支撑和可行的技术路径,更重要的是,它为行业未来的发展指明了方向。 书中对于燃气冷热电联供(CCHP)系统各个环节的深度剖析,让我得以从全新的视角审视我们以往的工作。例如,书中在讨论CCHP系统的经济性评估时,不仅仅停留于简单的投资回报分析,而是深入到了运营成本的精细化管理、设备生命周期成本的测算,以及不同政策环境下(如碳排放交易、能源补贴等)对项目经济性的影响。这种多维度的分析,对于我们做出更明智的投资决策至关重要。 尤其令我赞赏的是,这本书在介绍CCHP系统核心技术的同时,还非常注重与相关配套技术的融合。比如,书中详细阐述了CCHP系统与储能技术(如蓄冷蓄热、电池储能)的协同作用,以及如何通过智能化控制平台,实现CCHP系统与电网、热网、冷网络的互动协调。这表明编著者已经充分认识到,未来的能源系统将是一个高度集成、智能化、信息化的网络,而CCHP系统将扮演其中重要的角色。 The book's thorough examination of the regulatory and permitting landscape for CCHP projects is a vital component for practitioners. Navigating the complex web of local, regional, and national regulations can be a significant challenge. This manual provides essential information on environmental impact assessments, safety certifications, and the various permits required for the construction and operation of such facilities, thus streamlining the project development process. Moreover, the discussions on the selection of gas turbines and combined cycle configurations are exceptionally detailed. The book compares and contrasts different turbine types, their efficiency characteristics, emission profiles, and suitability for various applications, guiding engineers in making informed choices based on specific project requirements and fuel availability. The explanation of how to optimize the steam cycle in conjunction with the gas turbine is a key aspect of maximizing overall system efficiency. The chapter dedicated to the integration of renewable energy sources with CCHP systems offers a compelling vision for the future of sustainable energy. It explores how CCHP can complement intermittent renewables by providing a reliable baseload power and heat source, thereby enhancing grid stability and reducing reliance on fossil fuels. The book discusses potential synergies with solar thermal, geothermal, and biomass energy, highlighting the potential for hybrid systems that leverage the strengths of each technology. The practical considerations for piping design, insulation, and heat tracing in CCHP systems are also covered in great detail. Understanding the proper sizing of pipes, selection of insulation materials to minimize heat loss, and the implementation of effective heat tracing systems are crucial for maintaining thermal efficiency and preventing operational issues, especially in colder climates. The book provides practical guidance on these aspects, ensuring that engineers can design robust and efficient distribution networks. The book's emphasis on the human element in operating and maintaining CCHP systems is also noteworthy. It acknowledges the importance of skilled personnel, comprehensive training programs, and robust safety protocols to ensure the well-being of operators and the safe functioning of the plant. The discussions on emergency preparedness and response plans are critical for mitigating potential risks. The author's ability to distill complex engineering concepts into clear and understandable language is a significant strength of this publication. This pedagogical approach ensures that the book is accessible to a wide range of professionals, from those with extensive experience to newcomers entering the field of energy engineering. The inclusion of a glossary of technical terms and an extensive bibliography further enhances the book's utility as a comprehensive reference. This allows readers to quickly define unfamiliar terms and explore related literature for deeper understanding. Ultimately, 《燃气冷热电联供工程技术规范》 stands as a testament to the authors' deep understanding of CCHP technology and its critical role in the future of energy. It is an invaluable resource that equips engineers and stakeholders with the knowledge and tools necessary to design, implement, and manage highly efficient and sustainable combined heat and power systems.

评分

我是一名热衷于学习和了解前沿工程技术的研究者,近期接触到了《燃气冷热电联供工程技术规范》这本书,着实让我耳目一新。在当今能源结构多元化和绿色发展的大背景下,高效利用能源、减少碳排放是各国共同的追求。而冷热电三联供(CCHP)技术,作为一种能够显著提升能源利用效率的分布式能源技术,正日益受到重视。这本书的出现,为我们系统深入地理解CCHP技术提供了宝贵的平台。 书中对于CCHP系统整体设计理念的阐述,让我印象尤为深刻。它不仅仅是简单地将发电、供热、制冷的功能叠加,而是强调了各子系统之间的能量耦合与优化。例如,书中详细介绍了如何根据实际需求,合理分配燃气轮机、余热锅炉、吸收式制冷机组等核心设备的容量,以及如何通过先进的控制策略,实现系统在不同工况下的高效运行。这种系统化的思考方式,是实现CCHP系统最大效益的关键。 我特别关注了书中关于CCHP系统在不同应用场景下的技术要求和设计考量。无论是工业园区的大型集中供能,还是商业建筑的楼宇分布式供能,亦或是特定工艺流程的定制化需求,书中都给出了相应的技术指导和案例分析。这使得读者能够根据自身所处的具体环境,找到最适合的技术方案。例如,在讨论工业应用时,书中会详细分析工艺余热的回收利用,以及如何与CCHP系统进行无缝对接,从而实现能源的最大化综合利用。 The book's comprehensive approach to detailing the operational aspects of CCHP systems is truly commendable. It delves into the complexities of start-up and shut-down procedures, load management strategies, and the intricacies of maintaining optimal performance under varying ambient conditions. The explanations on how to monitor key performance indicators (KPIs), such as the overall energy utilization efficiency, thermal efficiency, and electrical efficiency, are crucial for ensuring the long-term economic and environmental benefits of these installations. Furthermore, the book provides invaluable guidance on the maintenance and troubleshooting of CCHP plants. It outlines best practices for routine inspections, preventive maintenance schedules, and diagnostic techniques for identifying and resolving common operational issues. The detailed troubleshooting charts and repair recommendations are particularly helpful for on-site engineers, enabling them to quickly address problems and minimize downtime, thereby maximizing the system's availability and reliability. The insights offered regarding the integration of CCHP systems with smart grid technologies are also highly relevant in today’s evolving energy landscape. The book discusses how CCHP plants can participate in demand response programs, provide ancillary services to the grid, and contribute to enhanced grid stability. The exploration of concepts like virtual power plants and the optimal dispatch of distributed energy resources further highlights the strategic role of CCHP in a modern, decentralized energy system. The discussion on materials selection and corrosion control within the context of CCHP systems is another area where the book demonstrates exceptional technical depth. Understanding the long-term durability and reliability of components under high temperatures and aggressive chemical environments is paramount. The book provides valuable information on the properties of various materials used in heat exchangers, piping, and turbines, along with best practices for preventing corrosion and ensuring the longevity of the equipment. The author's commitment to providing practical, actionable advice is evident throughout the text. The inclusion of numerous engineering diagrams, performance curves, and reference tables makes the book an indispensable tool for engineers engaged in the design, installation, and operation of CCHP systems. This visual approach aids in understanding complex concepts and facilitates quick access to essential data. The book’s consideration of future trends and potential advancements in CCHP technology is also noteworthy. It touches upon areas such as the integration of advanced materials, novel cycle configurations, and the potential for utilizing alternative fuels, offering a forward-looking perspective that inspires innovation and continuous improvement within the industry. The author's methodical approach to presenting information, starting from fundamental principles and progressively moving towards complex applications, ensures that readers can build a solid foundation of knowledge. This structured learning pathway makes the book suitable for a wide audience, from students to seasoned professionals. In summary, 《燃气冷热电联供工程技术规范》 is a comprehensive and authoritative resource that offers invaluable insights into the design, operation, and optimization of combined cooling, heating, and power systems. Its practical guidance, technical depth, and forward-looking perspective make it an essential read for anyone involved in the field of distributed energy generation and utilization.

评分

作为一名对能源效率提升和技术革新充满热情的研究者,我最近拜读了《燃气冷热电联供工程技术规范》,这本书对我来说,是一次知识的“头脑风暴”。 书中对CCHP(冷热电三联供)系统与可再生能源的耦合应用,进行了深入的探讨。它详细介绍了如何将CCHP系统与太阳能光热、地热能、生物质能等可再生能源结合,形成一种更加绿色、低碳、多元化的综合能源供应体系。这种“多能互补”的思路,对于我们应对气候变化、构建清洁能源未来至关重要。 我尤其喜欢书中关于CCHP系统在不同应用场景下的案例分析。从工业厂房的余热回收,到大型商业综合体的集中供能,再到区域供暖供冷网络的构建,书中都提供了详实的技术方案和经济性评估。这些真实的工程案例,让我能够更直观地理解CCHP技术的优势和落地性。 The book's comprehensive coverage of the design and operation of heat recovery steam generators (HRSGs) is crucial for maximizing the efficiency of CCHP systems. It details the various configurations of HRSGs, their thermal performance characteristics, and the importance of proper blowdown and water treatment to ensure their reliability and longevity. The discussion on integrating HRSGs with gas turbines is key to optimizing overall power generation and heat recovery. Furthermore, the book provides valuable insights into the selection and application of auxiliary equipment required for CCHP plants, such as deaerators, chemical dosing systems, and condensate return systems. The proper design and operation of these components are essential for maintaining the overall efficiency and reliability of the thermal cycle. The authors' meticulous attention to detail in addressing the performance monitoring and optimization of CCHP systems is commendable. The book outlines various methods for assessing system performance, identifying areas for improvement, and implementing strategies to enhance energy efficiency and reduce operating costs. This focus on continuous optimization is vital for long-term success. The section on the integration of CCHP systems with building automation and control networks offers a glimpse into the future of smart energy management. The book discusses how CCHP can be seamlessly integrated with advanced control platforms to optimize energy usage, enhance comfort, and provide valuable data for operational decision-making. The authors' commitment to providing a clear and comprehensive understanding of CCHP technology is evident throughout the text. The logical organization and detailed explanations make this book an invaluable resource for engineers, technicians, and decision-makers involved in the energy sector. The inclusion of extensive technical appendices, featuring relevant codes, standards, and performance data, further solidifies the book's position as a definitive reference guide for CCHP engineering. These resources are invaluable for practical application and detailed analysis. In essence, 《燃气冷热电联供工程技术规范》 is a landmark publication that not only elucidates the intricate engineering principles of CCHP systems but also highlights their pivotal role in advancing sustainable energy solutions for a greener future.

相关图书

本站所有内容均为互联网搜索引擎提供的公开搜索信息,本站不存储任何数据与内容,任何内容与数据均与本站无关,如有需要请联系相关搜索引擎包括但不限于百度google,bing,sogou

© 2025 book.idnshop.cc All Rights Reserved. 静思书屋 版权所有