內容簡介
This book is aimed at postgraduate students in applied mathematics as well as at engineering and physics students with a firm background in mathematics. The first four chapters can be used as the material for a first course on inverse problems with a focus on computational and statistical aspects. On the other hand, Chapters 3 and 4, which discuss statistical and nonstationary inversion methods, can be used by students already having knowldege of classical inversion methods.
There is rich literature, including numerous textbooks, on the classical aspects of inverse problems. From the numerical point of view, these books concentrate on problems in which the measurement errors are either very small or in,which the error properties are known exactly. In real world problems, however, the errors are seldom very small and their properties in the deterministic sense are not well known. For example, in classical literature the error norm is usually assumed to be a known real number. In reality, the error norm is a random variable whose mean might be known.
內頁插圖
目錄
Preface
1 Inverse Problems and Interpretation of Measurements
1.1 Introductory Examples
1.2 Inverse Crimes
2 Classical Regularization Methods
2.1 Introduction: Fredholm Equation
2.2 Truncated Singular Value Decomposition
2.3 Tikhonov Regularization
2.3.1 Generalizations of the Tikhonov Regularization
2.4 Regularization by Truncated Iterative Methods
2.4.1 Landweber-Fridman Iteration
2.4.2 Kaczmarz Iteration and ART
2.4.3 Krylov Subspace Methods
2.5 Notes and Comments
3 Statistical Inversion Theory
3.1 Inverse Problems and Bayes' Formula
3.1.1 Estimators
3.2 Construction of the Likelihood Function
3.2.1 Additive Noise
3.2.2 Other Explicit Noise Models
3.2.3 Counting Process Data
3.3 Prior Models
3.3.1 Gaussian Priors
3.3.2 Impulse Prior Densities
3.3.3 Discontinuities
3.3.4 Markov Random Fields
3.3.5 Sample-based Densities
3.4 Gaussian Densities
3.4.1 Gaussian Smoothness Priors
3.5 Interpreting the Posterior Distribution
3.6 Markov Chain Monte Carlo Methods
3.6.1 The Basic Idea
3.6.2 Metropolis-Hastings Construction of the Kernel
3.6.3 Gibbs Sampler
3.6.4 Convergence
3.7 Hierarcical Models
3.8 Notes and Comments
4 Nonstationary Inverse Problems
4.1 Bayesian Filtering
4.1.1 A Nonstationary Inverse Problem
4.1.2 Evolution and Observation Models
4.2 Kalman Filters
4.2.1 Linear Gaussian Problems
4.2.2 Extended Kalman Filters
4.3 Particle Filters
4.4 Spatial Priors
4.5 Fixed-lag and Fixed-interval Smoothing
4.6 Higher-order Markov Models
4.7 Notes and Comments
5 Classical Methods Revisited
5.1 Estimation Theory
5.1.1 Maximum Likelihood Estimation
5.1.2 Estimators Induced by Bayes Costs
5.1.3 Estimation Error with Affine Estimators
5.2 Test Cases
5.2.1 Prior Distributions
5.2.2 Observation Operators
5.2.3 The Additive Noise Models
5.2.4 Test Problems
5.3 Sample-Based Error Analysis
5.4 Truncated Singular Value Decomposition
5.5 Conjugate Gradient.Iteration
5.6 Tikhonov Regularization
5.6.1 Prior Structure and Regularization Level
5.6.2 Misspeeification of the Gaussian Observation Error Model
5.6.3 Additive Cauchy Errors
5.7 Diseretization and Prior Models
5.8 Statistical Model Reduction, Approximation Errors and Inverse Crimes
5.8.1 An Example: Full Angle Tomography and CGNE
5.9 Notes and Comments
6 Model Problems
6.1 X-ray Tomography
6.1.1 Radon Transform
6.1.2 Discrete Model
6.2 Inverse Source Problems
6.2.1 Quasi-static Maxwell's Equations
6.2.2 Electric Inverse Source Problems
6.2.3 Magnetic Inverse Source Problems
6.3 Impedance Tomography
6.4 Optical Tomography
6.4.1 The Radiation Transfer Equation
6.4.2 Diffusion Approximation
6.4.3 Time-harmonic Measurement
6.5 Notes and Comments
7 Case Studies
7.1 Image Deblurring and Recovery of Anomalies
7.1.1 The Model Problem
7.1.2 Reduced and Approximation Error Models
7.1.3 Sampling the Posterior Distribution
7.1.4 Effects of Modelling Errors
7.2 Limited Angle Tomography: Dental X-ray Imaging
7.2.1 The Layer Estimation
7.2.2 MAP Estimates
7.2.3 Sampling: Gibbs Sampler
7.3 Biomagnetic Inverse Problem: Source Localization
7.3.1 Reconstruction with Gaussian White Noise Prior Model
7.3.2 Reconstruction of Dipole Strengths with the e1-prior Model
7.4 Dynamic MEG by Bayes Filtering
7.4.1 A Single Dipole Model
7.4.2 More Realistic Geometry
7.4.3 Multiple Dipole Models
7.5 Electrical Impedance Tomography: Optimal Current Patterns
7.5.1 A Posteriori Synthesized Current Patterns
7.5.2 Optimization Criterion
7.5.3 Numerical Examples
7.6 Electrical Impedance Tomography: Handling Approximation Errors
7.6.1 Meshes and Projectors
7.6.2 The Prior Distribution and the Prior Model
7.6.3 The Enhanced Error Model
7.6.4 The MAP Estimates
7.7 Electrical Impedance Process Tomography
7.7.1 The Evolution Model
7.7.2 The Observation Model and the Computational Scheme
7.7.3 The Fixed-lag State Estimate
7.7.4 Estimation of the Flow Profile
7.8 Optical Tomography in Anisotropic Media
7.8.1 The Anisotropy Model
7.8.2 Linearized Model
7.9 Optical Tomography: Boundary Recovery
7.9.1 The General Elliptic Case
7.9.2 Application to Optical Diffusion Tomography
7.10 Notes and Comments
A Appendix: Linear Algebra and Functional Analysis
A.1 Linear Algebra
A.2 Functional Analysis
A.3 Sobolev Spaces
B Appendix 2: Basics on Probability
B.1 Basic Concepts
B.2 Conditional Probabilities
References
Index
前言/序言
好的,這是一本假設的、與《統計和計算逆問題》主題完全無關的圖書簡介。 --- 圖書名稱:《行星地質學的奧秘:從岩石樣本到係外生命信號》 內容簡介 本書深入探索瞭行星地質學的前沿領域,旨在為讀者提供一個全麵而深入的視角,理解我們太陽係乃至更廣闊宇宙中岩石天體的形成、演化、內部結構及其潛在宜居性。我們不再將行星僅僅視為遙遠的球體,而是通過對實地采集的樣本、高精度遙感數據以及先進的行星模擬模型的綜閤分析,揭示其深層地質過程和化學指紋。 第一部分:行星物質的起源與分類 本書伊始,我們將追溯太陽係形成初期的物質來源。聚焦於微行星體和太陽星雲的化學成分,探討瞭原始星子如何通過吸積過程形成岩石行星的內核、地幔和地殼。詳細分析瞭地球、月球、火星以及水星等類地行星在冷卻和分異過程中的關鍵差異。 岩石樣本的精細分析: 闡述瞭利用質譜儀、電子顯微鏡和X射綫衍射等技術對阿波羅月岩、火星隕石以及“信天翁號”任務帶迴的樣本進行的同位素定年和礦物學研究。重點討論瞭如何通過岩石中的微量元素分布來重建其母體的熱演化曆史。 磁場與內部動力學: 深入解析瞭行星磁場的生成機製,特彆是關於地球外核的液態鐵流動與發電機效應。對比瞭火星早期磁場的消失對其大氣侵蝕的影響,並探討瞭水星極地永久陰影區中可能存在的揮發性物質的儲存機製,這些都與行星深層熱演化息息相關。 第二部分:錶麵過程與地貌演化 行星錶麵是記錄地質活動最直接的檔案庫。本部分著重於撞擊、火山活動、構造運動和風化作用如何塑造瞭不同天體的景觀。 撞擊坑動力學: 建立瞭撞擊事件對行星錶麵進行的時間標記和熱力學影響模型。我們分析瞭小行星和彗星撞擊的能量傳遞效率,以及由此産生的衝擊變質岩(Impactites)的結構特徵。特彆討論瞭月球和水星上保存完好的古老撞擊盆地,它們是研究早期太陽係轟擊曆史的窗口。 構造與火山形變: 考察瞭行星構造活動的不同形式。火星上的奧林匹斯山和水手榖展示瞭地殼拉張和火山巨型化的極端案例。對比之下,金星密集的火山流和地錶重塑事件,暗示瞭其獨特的全球性構造“重錶化”(Resurfacing)周期。書中詳細介紹瞭如何利用立體成像技術對這些構造特徵進行高程建模和應力場分析。 風化與侵蝕: 探討瞭由太陽風、輻射和微小隕石流在行星錶麵産生的風化作用。在沒有大氣保護的月球和水星上,錶岩屑層(Regolith)的物理和化學性質發生瞭顯著變化,這些變化對未來原位資源利用(ISRU)構成瞭重要挑戰。 第三部分:冰凍世界與地下海洋的探索 近年來,對太陽係外圍冰封衛星的興趣激增,它們被認為是尋找地外生命的潛在前沿陣地。 冰殼的力學與熱力學: 分析瞭木衛二(歐羅巴)和土衛二(恩剋拉多斯)冰層下的復雜結構。研究瞭潮汐力如何驅動冰層裂縫的形成和內部熱量的傳遞,從而維持地下液態水的存在。書中包含瞭對冰層裂縫(Lineae)的流體動力學模擬,解釋瞭羽流(Plume)的噴發機製。 次錶層化學環境: 重點討論瞭如何通過分析羽流中的揮發性物質,如水蒸氣、鹽類和有機分子,來推斷地下海洋的鹽度和化學平衡。我們審視瞭深海熱液噴口理論在這些冰衛星上的適用性,以及這些環境如何可能支持微生物生命。 第四部分:係外行星地質學的推斷 我們將研究的尺度擴展到太陽係之外,探討如何僅憑遙感數據對係外行星的地質狀態進行推斷。 大氣光譜與地錶特徵的關聯: 介紹如何利用詹姆斯·韋伯太空望遠鏡等觀測設施獲取的係外行星大氣光譜數據,反演其地錶溫度分布、火山氣體排放特徵(如SO2或CO2的豐度)以及可能的冰水覆蓋範圍。 宜居性與地質活動性: 討論瞭地質活動性(如闆塊構造或持續火山活動)對維持長期宜居環境的重要性,因為它們能驅動碳循環和調節氣候。通過對比超級地球和類地行星的密度差異,推測瞭其內部物質組成和岩石圈厚度,從而評估其長期地質穩定性的潛力。 本書內容嚴格基於對實際觀測數據和實驗室實驗的分析,專注於岩石、礦物、構造和熱力學過程,為行星科學傢、地質學傢和天體物理學的學生提供瞭一套紮實的理論框架和前沿案例研究。它是一部關於宇宙中物質如何組織和演化的嚴謹論述。