内容简介
This book contains a systematic and comprehensive exposition of Lobachevskian geometry and the theory ofdiscrete groups ofmotions in Euclidean space and Lobachevsky space. It is divided into two closely related parts: the first treats the geometry ofspaces ofconstant curvature and the second discrete groups of motions of these. The authors give a very clear account of their subject describing it from the viewpoints of elementary geometry, Riemannian geometry and group theory. The result is a book which has no rivalin the literature.Part I contains the classification ofmotions in spaces ofconstant curvature and non-traditional topics like the theory ofacute-angled polyhedra and methods for computing volumes of non-Euclidean polyhedra. Part II includes the theory of cristallographic, Fuchsian,and Kleinian groups and an exposition of Thurston's theory of deformations.The greater part of the book is accessible to first-year students in mathematics. At the same time the book includes very recent results which will be ofinterest to researchers in this field.
内页插图
目录
Ⅰ.Geometry of Spaces of Constant Curvature
Preface
Chapter 1 Basic Structures
1 Definition of Spaces of Constant Curvature
1.1 Lie Groups of Transformations
1.2 Groups of Motions of a Riemannian Manifold
1.3 Invariant Riemannian Metrics on Homogeneous Spaces
1.4 Spaces of Constant Curvature
1.5 Three Spaces
1.6 Subspaces of the Space R
2 The Classification Theorem
2.1 Statement of the Theorem
2.2 Reduction to Lie Algebras
2.3 The Symmetry
2.4 Structure of the Tangent Algebra of the Group of Motions
2.5 Riemann Space
3 Subspaces and Convexity
3.1 Involutions
3.2 Planes
3.3 Half-Spaces and Convex Sets
3.4 Orthogonal Planes
4 Metric
4.1 General Properties
4.2 Formulae for Distance in the Vector Model
4.3 Convexity of Distance
Chapter 2 Models of Lobachevskij Space
1 Projective Models
1.1 Homogeneous Domains
1.2 Projective ModelofLobachevskij Space
1.3 Projective Euclidean ModelsThe Klein Model
1.4 "Affine" Subgroup of the Group of Automorphisms of a Quadric
1.5 Riemannian Metric and Distance Between Points in the Projective Model
2 Conformal Models
2.1ConformaISpace
2.2 Conformal Model of the Lobachevskij Space
2.3 Conformal Euclidean Models
2.4 Complex Structure of the Lobachevskij Plane
……
References
前言/序言
要使我国的数学事业更好地发展起来,需要数学家淡泊名利并付出更艰苦地努力。另一方面,我们也要从客观上为数学家创造更有利的发展数学事业的外部环境,这主要是加强对数学事业的支持与投资力度,使数学家有较好的工作与生活条件,其中也包括改善与加强数学的出版工作。
科学出版社影印一批他们出版的好的新书,使我国广大数学家能以较低的价格购买,特别是在边远地区工作的数学家能普遍见到这些书,无疑是对推动我国数学的科研与教学十分有益的事。
这次科学出版社购买了版权,一次影印了23本施普林格出版社出版的数学书,就是一件好事,也是值得继续做下去的事情。大体上分一下,这23本书中,包括基础数学书5本,应用数学书6本与计算数学书12本,其中有些书也具有交叉性质。这些书都是很新的,2000年以后出版的占绝大部分,共计16本,其余的也是1990年以后出版的。这些书可以使读者较快地了解数学某方面的前沿,例如基础数学中的数论、代数与拓扑三本,都是由该领域大数学家编著的“数学百科全书”的分册。对从事这方面研究的数学家了解该领域的前沿与全貌很有帮助。按照学科的特点,基础数学类的书以“经典”为主,应用和计算数学类的书以“前沿”为主。这些书的作者多数是国际知名的大数学家,例如《拓扑学》一书的作者诺维科夫是俄罗斯科学院的院士,曾获“菲尔兹奖”和“沃尔夫数学奖”。这些大数学家的著作无疑将会对我国的科研人员起到非常好的指导作用。
当然,23本书只能涵盖数学的一部分,所以,这项工作还应该继续做下去。更进一步,有些读者面较广的好书还应该翻译成中文出版,使之有更大的读者群。
总之,我对科学出版社影印施普林格出版社的部分数学著作这一举措表示热烈的支持,并盼望这一工作取得更大的成绩。
国外数学名著系列(续一 影印版)56:几何II 常曲率空间 [Geometry 2:Spaces of Constant Curvature] epub pdf mobi txt 电子书 下载 2025
国外数学名著系列(续一 影印版)56:几何II 常曲率空间 [Geometry 2:Spaces of Constant Curvature] 下载 epub mobi pdf txt 电子书 2025
国外数学名著系列(续一 影印版)56:几何II 常曲率空间 [Geometry 2:Spaces of Constant Curvature] mobi pdf epub txt 电子书 下载 2025
国外数学名著系列(续一 影印版)56:几何II 常曲率空间 [Geometry 2:Spaces of Constant Curvature] epub pdf mobi txt 电子书 下载 2025