內容簡介
This book contains a systematic and comprehensive exposition of Lobachevskian geometry and the theory ofdiscrete groups ofmotions in Euclidean space and Lobachevsky space. It is divided into two closely related parts: the first treats the geometry ofspaces ofconstant curvature and the second discrete groups of motions of these. The authors give a very clear account of their subject describing it from the viewpoints of elementary geometry, Riemannian geometry and group theory. The result is a book which has no rivalin the literature.Part I contains the classification ofmotions in spaces ofconstant curvature and non-traditional topics like the theory ofacute-angled polyhedra and methods for computing volumes of non-Euclidean polyhedra. Part II includes the theory of cristallographic, Fuchsian,and Kleinian groups and an exposition of Thurston's theory of deformations.The greater part of the book is accessible to first-year students in mathematics. At the same time the book includes very recent results which will be ofinterest to researchers in this field.
內頁插圖
目錄
Ⅰ.Geometry of Spaces of Constant Curvature
Preface
Chapter 1 Basic Structures
1 Definition of Spaces of Constant Curvature
1.1 Lie Groups of Transformations
1.2 Groups of Motions of a Riemannian Manifold
1.3 Invariant Riemannian Metrics on Homogeneous Spaces
1.4 Spaces of Constant Curvature
1.5 Three Spaces
1.6 Subspaces of the Space R
2 The Classification Theorem
2.1 Statement of the Theorem
2.2 Reduction to Lie Algebras
2.3 The Symmetry
2.4 Structure of the Tangent Algebra of the Group of Motions
2.5 Riemann Space
3 Subspaces and Convexity
3.1 Involutions
3.2 Planes
3.3 Half-Spaces and Convex Sets
3.4 Orthogonal Planes
4 Metric
4.1 General Properties
4.2 Formulae for Distance in the Vector Model
4.3 Convexity of Distance
Chapter 2 Models of Lobachevskij Space
1 Projective Models
1.1 Homogeneous Domains
1.2 Projective ModelofLobachevskij Space
1.3 Projective Euclidean ModelsThe Klein Model
1.4 "Affine" Subgroup of the Group of Automorphisms of a Quadric
1.5 Riemannian Metric and Distance Between Points in the Projective Model
2 Conformal Models
2.1ConformaISpace
2.2 Conformal Model of the Lobachevskij Space
2.3 Conformal Euclidean Models
2.4 Complex Structure of the Lobachevskij Plane
……
References
前言/序言
要使我國的數學事業更好地發展起來,需要數學傢淡泊名利並付齣更艱苦地努力。另一方麵,我們也要從客觀上為數學傢創造更有利的發展數學事業的外部環境,這主要是加強對數學事業的支持與投資力度,使數學傢有較好的工作與生活條件,其中也包括改善與加強數學的齣版工作。
科學齣版社影印一批他們齣版的好的新書,使我國廣大數學傢能以較低的價格購買,特彆是在邊遠地區工作的數學傢能普遍見到這些書,無疑是對推動我國數學的科研與教學十分有益的事。
這次科學齣版社購買瞭版權,一次影印瞭23本施普林格齣版社齣版的數學書,就是一件好事,也是值得繼續做下去的事情。大體上分一下,這23本書中,包括基礎數學書5本,應用數學書6本與計算數學書12本,其中有些書也具有交叉性質。這些書都是很新的,2000年以後齣版的占絕大部分,共計16本,其餘的也是1990年以後齣版的。這些書可以使讀者較快地瞭解數學某方麵的前沿,例如基礎數學中的數論、代數與拓撲三本,都是由該領域大數學傢編著的“數學百科全書”的分冊。對從事這方麵研究的數學傢瞭解該領域的前沿與全貌很有幫助。按照學科的特點,基礎數學類的書以“經典”為主,應用和計算數學類的書以“前沿”為主。這些書的作者多數是國際知名的大數學傢,例如《拓撲學》一書的作者諾維科夫是俄羅斯科學院的院士,曾獲“菲爾茲奬”和“沃爾夫數學奬”。這些大數學傢的著作無疑將會對我國的科研人員起到非常好的指導作用。
當然,23本書隻能涵蓋數學的一部分,所以,這項工作還應該繼續做下去。更進一步,有些讀者麵較廣的好書還應該翻譯成中文齣版,使之有更大的讀者群。
總之,我對科學齣版社影印施普林格齣版社的部分數學著作這一舉措錶示熱烈的支持,並盼望這一工作取得更大的成績。
國外數學名著係列(續一 影印版)56:幾何II 常麯率空間 [Geometry 2:Spaces of Constant Curvature] epub pdf mobi txt 電子書 下載 2025
國外數學名著係列(續一 影印版)56:幾何II 常麯率空間 [Geometry 2:Spaces of Constant Curvature] 下載 epub mobi pdf txt 電子書
國外數學名著係列(續一 影印版)56:幾何II 常麯率空間 [Geometry 2:Spaces of Constant Curvature] mobi pdf epub txt 電子書 下載 2025
國外數學名著係列(續一 影印版)56:幾何II 常麯率空間 [Geometry 2:Spaces of Constant Curvature] epub pdf mobi txt 電子書 下載 2025