Python+Spark 2.0+Hadoop机器学习与大数据实战 林大贵 计算机与互联

Python+Spark 2.0+Hadoop机器学习与大数据实战 林大贵 计算机与互联 pdf epub mobi txt 电子书 下载 2025

林大贵著 著
图书标签:
  • Python
  • Spark
  • Hadoop
  • 机器学习
  • 大数据
  • 数据分析
  • 实战
  • 计算机
  • 互联网
  • 林大贵
想要找书就要到 静思书屋
立刻按 ctrl+D收藏本页
你会得到大惊喜!!
店铺: 文轩网旗舰店
出版社: 清华大学出版社
ISBN:9787302490739
商品编码:24790057891
开本:16开
出版时间:2018-01-01
页数:519
字数:864000

具体描述

作  者:林大贵 著 定  价:99 出 版 社:清华大学出版社 出版日期:2018年01月01日 页  数:519 装  帧:平装 ISBN:9787302490739 第1章 Python Spark机器学习与Hadoop大数据 1
1.1 机器学习的介绍 2
1.2 Spark的介绍 5
1.3 Spark数据处理 RDD、DataFrame、Spark SQL 7
1.4 使用Python开发 Spark机器学习与大数据应用 8
1.5 Python Spark 机器学习 9
1.6 Spark ML Pipeline机器学习流程介绍 10
1.7 Spark 2.0的介绍 12
1.8 大数据定义 13
1.9 Hadoop 简介 14
1.10 Hadoop HDFS分布式文件系统 14
1.11 Hadoop MapReduce的介绍 17
1.12 结论 18
第2章 VirtualBox虚拟机软件的安装 19
2.1 VirtualBox的下载和安装 20
2.2 设置VirtualBox存储文件夹 23
2.3 在VirtualBox创建虚拟机 25
2.4 结论 29
第3章 Ubuntu Linux 操作系统的安装 30
3.1 Ubuntu Linux 操作系统的安装 31
部分目录

内容简介

本书从浅显易懂的“大数据和机器学习”原理说明入手,讲述大数据和机器学习的基本概念,如分类、分析、训练、建模、预测、机器学习(推荐引擎)、机器学习(二元分类)、机器学习(多元分类)、机器学习(回归分析)和数据可视化应用等。书中不仅加入了新近的大数据技术,还丰富了“机器学习”内容。为降低读者学习大数据技术的门槛,书中提供了丰富的上机实践操作和范例程序详解,展示了如何在单机Windows系统上通过Virtual Box虚拟机安装多机Linux虚拟机,如何建立Hadoop集群,再建立Spark开发环境。书中介绍搭建的上机实践平台并不于单台实体计算机。对于有条件的公司和学校,参照书中介绍的搭建过程,同样可以实现将自己的平台搭建在多台实体计算机上,以便更加接近于大数据和机器学习真实的运行环境。本书很好适合于学习大数据基础知识的初学者阅读,更适合正在学习大数据理论和技术的人员作为上机实践用的教等 林大贵 著 林大贵,从事IT行业多年,在系统设计、网站开发、数字营销、商业智慧、大数据、机器学习等领域具有丰富的实战经验。
Python, Spark, and Hadoop: Unleashing the Power of Big Data and Machine Learning for Real-World Applications In today's data-driven world, the ability to process, analyze, and extract meaningful insights from vast datasets is no longer a niche skill but a fundamental requirement for success across numerous industries. As the volume and complexity of data continue to explode, traditional computing methods falter, demanding the adoption of robust, scalable, and efficient big data technologies. This is where the synergistic power of Python, Apache Spark, and Apache Hadoop truly shines. This comprehensive guide delves deep into the practical application of these foundational technologies, empowering you to build and deploy sophisticated machine learning models and big data solutions that tackle real-world challenges. The journey begins with a solid understanding of the Big Data ecosystem and the pivotal roles played by Hadoop and Spark. We will demystify the core concepts of distributed computing, explaining how Hadoop's MapReduce framework laid the groundwork for processing massive datasets across clusters of commodity hardware. You'll gain a clear grasp of the Hadoop Distributed File System (HDFS) and its vital function in storing and managing petabytes of data reliably and efficiently. Furthermore, we'll explore the evolution from MapReduce to Spark, highlighting Spark's dramatic performance improvements through its in-memory processing capabilities and its versatile API that supports various workloads, including batch processing, real-time streaming, SQL queries, and graph processing. Python, with its elegant syntax, extensive libraries, and thriving community, has become the de facto programming language for data science and machine learning. This guide will equip you with the essential Python skills needed to interact seamlessly with Spark and Hadoop. We will cover fundamental Python concepts, data manipulation with libraries like Pandas, and the crucial data structures and algorithms that underpin effective data analysis. You'll learn how to leverage Python's rich ecosystem of machine learning libraries, such as Scikit-learn, TensorFlow, and PyTorch, and understand how to integrate these powerful tools with your big data pipelines. The heart of this guide lies in its practical, hands-on approach to building and deploying real-world applications. We will guide you through the process of setting up and configuring a Hadoop and Spark environment, whether it's a local development setup or a cluster deployment on cloud platforms like AWS, Azure, or Google Cloud. You'll gain proficiency in writing Spark applications using PySpark, the Python API for Spark, enabling you to harness Spark's distributed processing power for data transformation, feature engineering, and model training on large datasets. Machine learning is a cornerstone of extracting value from big data. This guide provides a comprehensive exploration of various machine learning algorithms, from classic techniques like linear regression, logistic regression, decision trees, and support vector machines to more advanced methods like ensemble learning (random forests, gradient boosting) and deep learning architectures (convolutional neural networks, recurrent neural networks). Crucially, we will focus on how to apply these algorithms within a distributed computing framework. You'll learn how to train models on distributed datasets using Spark MLlib, Spark's native machine learning library, and how to optimize model performance for large-scale scenarios. This includes understanding concepts like distributed training, hyperparameter tuning in a distributed environment, and model deployment strategies for big data applications. Beyond individual machine learning algorithms, the guide emphasizes the entire machine learning lifecycle within the context of big data. This encompasses data preprocessing techniques tailored for large datasets, such as handling missing values, feature scaling, encoding categorical variables, and dimensionality reduction. You'll learn how to perform effective feature engineering to create informative features that drive model accuracy, understanding how to do this efficiently on distributed data. Model evaluation and selection will be covered in detail, focusing on metrics relevant to big data problems and strategies for robust model validation. Furthermore, we will address the critical aspects of model deployment, including how to integrate trained models into real-time data processing pipelines and how to monitor their performance in production. The capabilities of Spark extend far beyond batch processing. This guide will introduce you to Spark Streaming, enabling you to build real-time data processing applications. You'll learn how to ingest data from various sources, such as Kafka or Kinesis, perform transformations and aggregations on streaming data, and even train and deploy machine learning models that can make predictions on incoming data streams. This opens up possibilities for building applications like real-time fraud detection systems, dynamic recommendation engines, and live anomaly detection. Graph processing is another powerful facet of Spark that will be explored. We will delve into GraphX, Spark's API for graph computation. You'll learn how to represent graph data, perform fundamental graph algorithms like PageRank and connected components, and apply these techniques to problems such as social network analysis, recommendation systems, and fraud detection in network structures. Real-world applications are the ultimate test of these technologies. Throughout the guide, you will encounter numerous case studies and practical examples that demonstrate how Python, Spark, and Hadoop are used to solve pressing business problems. These examples will span diverse domains, including: E-commerce and Retail: Building personalized recommendation systems, predicting customer churn, optimizing pricing strategies, and analyzing customer behavior. Finance: Detecting fraudulent transactions in real-time, assessing credit risk, algorithmic trading, and analyzing market trends. Healthcare: Analyzing medical records for disease prediction, identifying patterns in patient data, and developing personalized treatment plans. IoT and Sensor Data: Processing and analyzing data from connected devices for predictive maintenance, anomaly detection, and performance monitoring. Natural Language Processing (NLP): Sentiment analysis, topic modeling, text summarization, and building intelligent chatbots on large text corpora. We will also touch upon important considerations for working with big data, such as data governance, security, and performance optimization. You'll learn techniques for tuning Spark jobs, optimizing data storage, and ensuring the scalability and reliability of your big data solutions. Understanding the nuances of distributed systems, including data partitioning, shuffling, and fault tolerance, will be integral to building robust and efficient applications. This guide is designed for individuals who are passionate about leveraging the power of data to drive innovation. Whether you are a data scientist, a machine learning engineer, a software developer looking to expand your skillset, or a business analyst eager to harness the potential of big data, this book will provide you with the knowledge and practical experience needed to excel in this rapidly evolving field. By mastering the synergy of Python, Spark, and Hadoop, you will be well-equipped to tackle complex data challenges, build intelligent applications, and unlock unprecedented insights from the vast ocean of data that surrounds us.

用户评价

评分

评价三: 坦白说,我最初购买这本书是抱着试试看的心态,因为市面上关于大数据和机器学习的书籍琳琅满目,很难找到真正适合自己且能带来启发的内容。然而,这本书给我带来了巨大的惊喜。作者林大贵老师在叙述技术细节的同时,始终不忘回归“实战”的本质。书中的每个章节都伴随着精心设计的代码示例,这些示例不仅能够帮助读者理解概念,更重要的是,它们都是可以直接运行并产生结果的。我尝试着跟着书中的步骤,在自己的环境中部署了Spark和Hadoop集群,并运行了其中的一些示例代码。整个过程非常顺畅,这得益于作者清晰的指导和对常见问题的预判。机器学习的部分,我觉得这本书做得尤为出色。它没有停留在理论层面,而是非常务实地讲解了如何利用Spark MLlib库来构建和优化机器学习模型,例如如何处理特征工程、选择合适的评估指标,以及如何进行参数调优以获得更好的模型性能。这本书就像一位经验丰富的大数据工程师,手把手地教你如何在大数据浪潮中扬帆起航。

评分

评价四: 这本书给我最大的感受是“全面”和“前沿”。在当前大数据和人工智能飞速发展的时代,能够一本涵盖Python、Spark 2.0和Hadoop这三大核心技术的书籍,并且能结合机器学习的实战应用,显得尤为难得。林大贵老师在书中不仅讲解了Spark 2.0的新特性,如Structured Streaming和Project Tungsten,还深入探讨了Hadoop生态系统中各个组件的协同工作方式。我一直对实时数据处理非常感兴趣,书中关于Structured Streaming的讲解,让我对如何构建流式处理应用有了更清晰的认识。机器学习方面,作者也紧跟技术发展的步伐,介绍了最新的算法和实现技巧。阅读这本书,我感觉自己仿佛置身于一个最前沿的技术浪潮之中,不断吸收着最新的知识和理念。而且,书中的一些案例,比如分布式文件系统的使用、MapReduce编程范式、以及Spark的各种API,都让我受益匪浅。这本书不仅教会我“怎么做”,更让我理解了“为什么这么做”,这种深度思考的引导,对于技术能力的提升至关重要。

评分

评价一: 这本书简直是打开了我通往大数据和机器学习新世界的大门!一直以来,我对Spark和Hadoop这些听起来高大上的技术都觉得遥不可及,感觉像是专属于大神们的领域。但自从翻开这本书,我的想法彻底改变了。作者林大贵老师用一种非常接地气、循序渐进的方式,把那些复杂的概念拆解得清晰易懂。从最基础的Python环境搭建,到Spark的核心RDD、DataFrame和Dataset的操作,再到Hadoop的分布式存储和计算原理,书中都给出了详尽的解释和实用的代码示例。我尤其喜欢书中关于机器学习算法在Spark上的实现部分,那些曾经让我头疼的算法,比如逻辑回归、决策树、K-means等,通过Spark的分布式计算能力,变得高效且易于理解。书中的案例也非常贴合实际业务场景,比如用户行为分析、推荐系统构建等,让我能立刻感受到学到的知识是如何应用到实际工作中的。阅读过程中,我仿佛看到一个清晰的蓝图,一步步指导我如何在真实的大数据环境中,运用Python和Spark的力量,去解决复杂的问题。我迫不及待地想将书中的知识应用到我的项目中,期待看到数据带来的洞察和价值。

评分

评价五: 作为一名从传统软件开发转型的工程师,我一直在努力提升自己在大数据和机器学习领域的能力,而这本书无疑为我指明了方向。林大贵老师在书中将复杂的理论知识与实际应用相结合,使得学习过程充满乐趣和成就感。我特别喜欢书中关于Hadoop分布式文件系统(HDFS)的讲解,它让我明白了在大规模数据集上进行数据存储和管理的重要性。同时,Spark的内存计算能力和丰富的API,在书中得到了淋漓尽致的展现。我印象深刻的是,作者在讲解机器学习算法时,并没有回避其中的数学原理,而是用一种非常易于理解的方式将其呈现出来,并重点强调了这些算法在Spark上的高效实现。书中还包含了一些关于大数据项目部署和运维的实用建议,这对于将学到的知识应用到实际工作中非常有帮助。总而言之,这本书不仅仅是一本技术书籍,更像是一位良师益友,在我探索大数据和机器学习的道路上,给予了我宝贵的指导和鼓励。

评分

评价二: 作为一名对大数据技术充满好奇的开发者,我一直在寻找一本能够系统性地介绍Python、Spark和Hadoop在机器学习和大数据实战中的书籍。这本书确实满足了我的需求,甚至超出了我的预期。它不仅仅是技术的堆砌,更注重理念的传达和实战的指导。林大贵老师在书中对Spark的架构和优化做了深入的剖析,这对于理解Spark的性能瓶颈和调优策略至关重要。我特别欣赏书中关于Spark SQL和DataFrame API的讲解,这些API让数据处理变得更加简洁高效。同时,书中也强调了Hadoop在整个大数据生态系统中的角色,以及如何与Spark协同工作,形成强大的数据处理能力。机器学习的部分,作者挑选了几个最常用且重要的算法,并详细讲解了它们在Spark上的实现细节,包括数据预处理、模型训练、评估和调优等全流程。让我印象深刻的是,书中还涉及了一些关于大数据存储和计算的底层原理,这对于深入理解技术非常有帮助。整本书的逻辑清晰,章节安排合理,从基础概念到高级应用,层层递进,非常适合有一定编程基础的读者进行学习。

相关图书

本站所有内容均为互联网搜索引擎提供的公开搜索信息,本站不存储任何数据与内容,任何内容与数据均与本站无关,如有需要请联系相关搜索引擎包括但不限于百度google,bing,sogou

© 2025 book.idnshop.cc All Rights Reserved. 静思书屋 版权所有