现代数学的入门的关键主要是群伦和拓扑。这些就要你花大量的时间学数学的基础概念,其实分析难就难在概念的理解,连续和一致连续等等,很多时候,你要花很多时间改变学习思路,我就是这样的,一直认为自己笨,其实不是这样的,其实别人学一遍,你学两遍,还不行,多读几遍,要有许三多的精神,什么都不难,我从来没有对自己说不行!因为我相信只要我做,我就能做好,
评分非常喜欢的衣服,继续购买
评分好好好好好好好好好好好好好
评分1736年,有人带着这个问题找到了当时的大数学家欧拉,欧拉经过一番思考,很快就用一种独特的方法给出了解答。欧拉把这个问题首先简化,他把两座小岛和河的两岸分别看作四个点,而把七座桥看作这四个点之间的连线。那么这个问题就简化成,能不能用一笔就把这个图形画出来。经过进一步的分析,欧拉得出结论--不可能每座桥都走一遍,最后回到原来的位置。并且给出了所有能够一笔画出来的图形所应具有的条件。这是拓扑学的“先声”。
评分图论〔Graph Theory〕是数学的一个分支。它以图为研究对象。图论中的图是由若干给定的点及连接两点的线所构成的图形,这种图形通常用来描述某些事物之间的某种特定关系,用点代表事物,用连接两点的线表示相应两个事物间具有这种关系。图论起源于著名的哥尼斯堡七桥问题。在哥尼斯堡的普莱格尔河上有七座桥将河中的岛及岛与河岸联结起来
评分图论〔Graph Theory〕是数学的一个分支。它以图为研究对象。图论中的图是由若干给定的点及连接两点的线所构成的图形,这种图形通常用来描述某些事物之间的某种特定关系,用点代表事物,用连接两点的线表示相应两个事物间具有这种关系。图论起源于著名的哥尼斯堡七桥问题。在哥尼斯堡的普莱格尔河上有七座桥将河中的岛及岛与河岸联结起来
评分自己现在还没有到说自己数学到什么程度,但是自己对于古典分析很有信心了,对于自己学习新的数学也有了期望,
评分1736年,有人带着这个问题找到了当时的大数学家欧拉,欧拉经过一番思考,很快就用一种独特的方法给出了解答。欧拉把这个问题首先简化,他把两座小岛和河的两岸分别看作四个点,而把七座桥看作这四个点之间的连线。那么这个问题就简化成,能不能用一笔就把这个图形画出来。经过进一步的分析,欧拉得出结论--不可能每座桥都走一遍,最后回到原来的位置。并且给出了所有能够一笔画出来的图形所应具有的条件。这是拓扑学的“先声”。
评分
本站所有内容均为互联网搜索引擎提供的公开搜索信息,本站不存储任何数据与内容,任何内容与数据均与本站无关,如有需要请联系相关搜索引擎包括但不限于百度,google,bing,sogou 等
© 2025 book.idnshop.cc All Rights Reserved. 静思书屋 版权所有