11,用微分学研究自然科学的一些例子。
评分4,作为度量空间的R^n、R^n中的开集和闭集、R^n中的紧致集、R^n中的范数、作为Euclid空间的R^n。
评分8,微分学的物理背景、微分与导数的定义、可微函数、微分与导数的几何意义、导数的计算、高阶导数。
评分 评分8,乘积拓扑、乘积空间、Tychonoff乘积定理、连通的拓扑空间、商拓扑、Alexandroff定理、粘合拓扑、完备的度量空间、度量空间的完备化、闭球套引理、第一纲集与第二纲集、Baire纲定理、拓扑空间上的映射的极限、拓扑空间上的映射的连续与一致连续、二重极限与累次极限、压缩映像原理。
评分定理的一些等价形式
评分 评分2,实数的公理系统、上下确界、自然数集、有理数集、无理数集、数学归纳法、Archimedes原理、数直线、实数的q进制表示、Dedekind分割。
评分编辑本段基本概念
本站所有内容均为互联网搜索引擎提供的公开搜索信息,本站不存储任何数据与内容,任何内容与数据均与本站无关,如有需要请联系相关搜索引擎包括但不限于百度,google,bing,sogou 等
© 2025 book.idnshop.cc All Rights Reserved. 静思书屋 版权所有