数学分析(A)-2
评分纸张质量好。发货快。
评分8,乘积拓扑、乘积空间、Tychonoff乘积定理、连通的拓扑空间、商拓扑、Alexandroff定理、粘合拓扑、完备的度量空间、度量空间的完备化、闭球套引理、第一纲集与第二纲集、Baire纲定理、拓扑空间上的映射的极限、拓扑空间上的映射的连续与一致连续、二重极限与累次极限、压缩映像原理。
评分定理启示
评分定理启示
评分康托尔揭示了不同的n与空间Rn的一一对应关系.G.皮亚诺(Peano)则实现了把单位线段连续映入正方形.这两个发现启示了,在拓扑映射中,维数可能是不变的.1910年,布劳威尔对于任意的n证明了这个猜想——维数的拓扑不变性.在证明过程中,布劳威尔创造了连续拓扑映射的单纯逼近的概念,也就是一系列线性映射的逼近.他还创造了映射的拓扑度的概念——一个取决于拓扑映射连续变换的同伦类的数.实践证明,这些概念在解决重要的不变性问题时非常有用.例如,布劳威尔就借助它界定了n维区域;J.W.亚历山大(Alexander)则用它证明了贝蒂数的不变性.
评分8,微分学的物理背景、微分与导数的定义、可微函数、微分与导数的几何意义、导数的计算、高阶导数。
评分4,作为度量空间的R^n、R^n中的开集和闭集、R^n中的紧致集、R^n中的范数、作为Euclid空间的R^n。
评分刚拿到手翻看了一下,很专业。ps:其实这本书不用咱来评价。。
本站所有内容均为互联网搜索引擎提供的公开搜索信息,本站不存储任何数据与内容,任何内容与数据均与本站无关,如有需要请联系相关搜索引擎包括但不限于百度,google,bing,sogou 等
© 2025 book.idnshop.cc All Rights Reserved. 静思书屋 版权所有