主要性质
评分满足:
评分东西不错,~~
评分东西不错,希望一直好用。
评分设X是非空集合,令J0={X,},称(X,J0)为平庸拓扑空间,J0为平庸拓扑。令J1={A|AÌX},称(X,J1)为离散拓扑空间。在离散拓扑空间中任意子集均是开集。对实数集R1,令J={BÌR1|"x∈G,∈ε>0,使(x-ε,x+ε)ÌG},则(R1,J)就是一维欧几里得空间。类似地可定义n维欧几里得空间Rn。
评分《拓扑空间》是一部本科生学习拓扑空间的基础教程。引导读者很好的学习拓扑中有关几何的东西什么是最重要的。《拓扑空间》的内容分为三大部分,线和面、矩阵空间和拓扑空间。书中将大量的数学词汇概念囊括其中,不要求读者对简单定理或者集合知识十分了解,从而减少读者理解上的难度。收敛定理的应用在帮助读者抓住重点的同时,逐渐接触并理解拓扑的概念,书中的知识点步步逼近,前九节重在为本科生讲述矩阵空间的知识,同时也包括了大量的材料,这些将成为研究生学习的教程。 《拓扑空间》是一部本科生学习拓扑空间的基础教程。引导读者很好的学习拓扑中有关几何的东西什么是最重要的。《拓扑空间》的内容分为三大部分,线和面、矩阵空间和拓扑空间。书中将大量的数学词汇概念囊括其中,不要求读者对简单定理或者集合知识十分了解,从而减少读者理解上的难度。收敛定理的应用在帮助读者抓住重点的同时,逐渐接触并理解拓扑的概念,书中的知识点步步逼近,前九节重在为本科生讲述矩阵空间的知识,同时也包括了大量的材料,这些将成为研究生学习的教程。
评分拓扑学的需要大大刺激了抽象代数学的发展,并且形成了两个新的代数学分支:同调代数与代数K理论。代数几何学从50年代以来已经完全改观。托姆的配边理论直接促使代数簇的黎曼-罗赫定理的产生,后者又促使拓扑K 理论的产生。现代代数几何学已完全使用上同调的语言,代数数论与代数群也在此基础上取得许多重大成果,例如有关不定方程整数解数目估计的韦伊猜想和莫德尔猜想的证明。范畴与函子的观念,是在概括代数拓扑的方法论时形成的。范畴论已深入数学基础、代数几何学等分支,对拓扑学本身也有影响。如拓扑斯的观念大大拓广了经典的拓扑空间观念。
评分 评分空间中一条自身不相交的封闭曲线,会发生打结现象。要问一个结能否解开(即能否变形成平放的圆圈),或者问两个结能否互变,并且不只做个模型试试,还要给出证明,那就远不是件容易的事了(见纽结理论)。
本站所有内容均为互联网搜索引擎提供的公开搜索信息,本站不存储任何数据与内容,任何内容与数据均与本站无关,如有需要请联系相关搜索引擎包括但不限于百度,google,bing,sogou 等
© 2025 book.idnshop.cc All Rights Reserved. 静思书屋 版权所有