6,阶梯函数的积分、上函数的积分、一般区间上的Lebesgue可积函数类、Lebesgue积分的基本性质、Levi单调收敛定理、Lebesgue控制收敛定理、Lebesgue 广义积分。
评分作者的遗作,非常不错,希望下次找个好的出版社再版。
评分5,完全有界与等度连续、Arzela-Ascoli定理、Weierstrass逼近定理、Stone-Weierstrass定理、幂级数在组合数学中的应用。
评分10,正交函数系、Pythagoras定理、Fourier级数与Fourier系数、Fourier级数的极限性质、完备正交系、三角级数、三角级数的平均收敛性与逐点收敛、Riemann引理、推广的Fourier引理、局部化原理、Fejer定理、Weierstrass第近定理、三角函数系的完备性、Parseval等式、等周不等式。
评分6,阶梯函数的积分、上函数的积分、一般区间上的Lebesgue可积函数类、Lebesgue积分的基本性质、Levi单调收敛定理、Lebesgue控制收敛定理、Lebesgue 广义积分。
评分7,连续映射、连续映射与同胚、Peano曲线、Tietze扩张定理、拓扑空间的紧致性、Heine-Borel定理、紧致空间的性质、Bolzano-Weierstrass性质、Lebesgue引理、局部紧空间、Lindelof定理。
评分9,线性赋范空间、Banach空间、Euclid空间、Hilbert空间、线性算子、算子的范数、连续算子空间、赋范空间上的可微映射、映射的微分与导数、映射的微分的Jacobi矩阵、函数的连续性与可微性、微分的算术运算、复合映射的微分、逆映射的微分、映射的偏导数与微分、方向导数与梯度。
评分9,Beta函数与Gamma函数、Gauss-Euler公式、余元公式、Stirling公式与Wallis公式、卷积、卷积的微分、Delta函数族、用Delta函数族逼近函数、广义函数、广义函数空间、基本解。
评分10,有限增量定理、连续可微映射、中值定理、映射的高阶微分与偏导数、高阶微分的运算、映射的Taylor公式、映射的局部极值、、切平面、法向量、切向量。
本站所有内容均为互联网搜索引擎提供的公开搜索信息,本站不存储任何数据与内容,任何内容与数据均与本站无关,如有需要请联系相关搜索引擎包括但不限于百度,google,bing,sogou 等
© 2025 book.idnshop.cc All Rights Reserved. 静思书屋 版权所有