4,二重极限可交换的条件、函数族的极限函数的连续性、幂级数的和函数的连续性、Dini定理、函数族极限函数的可积性、函数族的极限函数的可微性、幂级数的和函数的可微性、Cesaro和、Tauber定理。
评分11,隐映射定理、微分同胚、逆映射定理、秩定理、函数相关性、Morse引理。
评分3,广义积分的定义、广义积分的基本性质、广义积分的变量替换与分部积分公式、广义积分收敛性的判别法、有多个奇异点的广义积分、广义积分的主值。
评分9,线性赋范空间、Banach空间、Euclid空间、Hilbert空间、线性算子、算子的范数、连续算子空间、赋范空间上的可微映射、映射的微分与导数、映射的微分的Jacobi矩阵、函数的连续性与可微性、微分的算术运算、复合映射的微分、逆映射的微分、映射的偏导数与微分、方向导数与梯度。
评分钱先生的遗-作,从钱先生的《解题之道》了解钱先生的,从中获益匪浅。这些著述凝结了作者的心力。
评分9,线性赋范空间、Banach空间、Euclid空间、Hilbert空间、线性算子、算子的范数、连续算子空间、赋范空间上的可微映射、映射的微分与导数、映射的微分的Jacobi矩阵、函数的连续性与可微性、微分的算术运算、复合映射的微分、逆映射的微分、映射的偏导数与微分、方向导数与梯度。
评分9,线性赋范空间、Banach空间、Euclid空间、Hilbert空间、线性算子、算子的范数、连续算子空间、赋范空间上的可微映射、映射的微分与导数、映射的微分的Jacobi矩阵、函数的连续性与可微性、微分的算术运算、复合映射的微分、逆映射的微分、映射的偏导数与微分、方向导数与梯度。
评分10,正交函数系、Pythagoras定理、Fourier级数与Fourier系数、Fourier级数的极限性质、完备正交系、三角级数、三角级数的平均收敛性与逐点收敛、Riemann引理、推广的Fourier引理、局部化原理、Fejer定理、Weierstrass第近定理、三角函数系的完备性、Parseval等式、等周不等式。
评分10,正交函数系、Pythagoras定理、Fourier级数与Fourier系数、Fourier级数的极限性质、完备正交系、三角级数、三角级数的平均收敛性与逐点收敛、Riemann引理、推广的Fourier引理、局部化原理、Fejer定理、Weierstrass第近定理、三角函数系的完备性、Parseval等式、等周不等式。
本站所有内容均为互联网搜索引擎提供的公开搜索信息,本站不存储任何数据与内容,任何内容与数据均与本站无关,如有需要请联系相关搜索引擎包括但不限于百度,google,bing,sogou 等
© 2025 book.idnshop.cc All Rights Reserved. 静思书屋 版权所有