1,积分的物理与几何背景、Riemann积分的定义、Riemann可积函数、可积函数空间、Lebesgue定理、Riemann积分积分区间的可加性、积分的估计、积分中值定理、一些重要的积分不等式。
评分 评分4,作为度量空间的R^n、R^n中的开集和闭集、R^n中的紧致集、R^n中的范数、作为Euclid空间的R^n。
评分1,积分的物理与几何背景、Riemann积分的定义、Riemann可积函数、可积函数空间、Lebesgue定理、Riemann积分积分区间的可加性、积分的估计、积分中值定理、一些重要的积分不等式。
评分5,Euler定理、拓扑等价、Euclid空间中映射的连续性、同胚、闭曲面的分类定理、拓扑不变量。
评分11,隐映射定理、微分同胚、逆映射定理、秩定理、函数相关性、Morse引理。
评分6,阶梯函数的积分、上函数的积分、一般区间上的Lebesgue可积函数类、Lebesgue积分的基本性质、Levi单调收敛定理、Lebesgue控制收敛定理、Lebesgue 广义积分。
评分8,Lebesgue可测函数、可测性与可积性之间的关系、Lebesgue积分号下取极限、交换积分顺序、Lebesgue测度、Lebesgue可测集、平方可积函数集、Riesz-Fischer定理。
评分3,广义积分的定义、广义积分的基本性质、广义积分的变量替换与分部积分公式、广义积分收敛性的判别法、有多个奇异点的广义积分、广义积分的主值。
本站所有内容均为互联网搜索引擎提供的公开搜索信息,本站不存储任何数据与内容,任何内容与数据均与本站无关,如有需要请联系相关搜索引擎包括但不限于百度,google,bing,sogou 等
© 2025 book.idnshop.cc All Rights Reserved. 静思书屋 版权所有