2,變上限的積分、Newton-Leibniz公式、定積分的分部積分與變量替換、積分餘項的Talyor公式、麵積原理、一元積分學的應用。
評分8,Lebesgue可測函數、可測性與可積性之間的關係、Lebesgue積分號下取極限、交換積分順序、Lebesgue測度、Lebesgue可測集、平方可積函數集、Riesz-Fischer定理。
評分6,拓撲空間與度量空間的定義、開集、閉集、邊界、拓撲基、Hausdorff空間、子拓撲、度量空間與拓撲空間的直積、第二可數空間。
評分9,綫性賦範空間、Banach空間、Euclid空間、Hilbert空間、綫性算子、算子的範數、連續算子空間、賦範空間上的可微映射、映射的微分與導數、映射的微分的Jacobi矩陣、函數的連續性與可微性、微分的算術運算、復閤映射的微分、逆映射的微分、映射的偏導數與微分、方嚮導數與梯度。
評分數學分析(A)-3
評分6,拓撲空間與度量空間的定義、開集、閉集、邊界、拓撲基、Hausdorff空間、子拓撲、度量空間與拓撲空間的直積、第二可數空間。
評分7,含參變量積分的定義、含參變量積分的連續性與可微性、含參變量積分的積分、含參變量廣義積分的一緻收斂性、含參變量廣義積分的一緻收斂的判彆法、反常積分號下取極限、含參變量廣義積分的連續性與可微性、含參變量廣義積分的積分。
評分9,Beta函數與Gamma函數、Gauss-Euler公式、餘元公式、Stirling公式與Wallis公式、捲積、捲積的微分、Delta函數族、用Delta函數族逼近函數、廣義函數、廣義函數空間、基本解。
評分6,階梯函數的積分、上函數的積分、一般區間上的Lebesgue可積函數類、Lebesgue積分的基本性質、Levi單調收斂定理、Lebesgue控製收斂定理、Lebesgue 廣義積分。
本站所有内容均为互联网搜索引擎提供的公开搜索信息,本站不存储任何数据与内容,任何内容与数据均与本站无关,如有需要请联系相关搜索引擎包括但不限于百度,google,bing,sogou 等
© 2025 book.tinynews.org All Rights Reserved. 静思书屋 版权所有