很不错。。。。。。。。。。
评分在这里,我是不指望能说清 Jaynes 是如何通过测量所谓 common sense 或 state of knowledge 来拓展(狭义)逻辑(就是非真即假),然后用它来解释概率论的,也许会越说越糊涂,毕竟从17世纪产生概率论以来对它的解释困扰了人们近300年。也许一听到“测量 common sense”这样的说法就已经令我们畏惧了,它的恐怖程度不亚于说能造一个会思考有感情的机器。其实不是这样的,让我们先想想逻辑是如何简化我们的思维的:这种狭义的逻辑将人们的思维简化为,叫它们“真|假”也行,“0|1”也行,总之是两个不同的状态,并建立它们之间的运算法则,就是所谓的布尔运算。这样的简化能做些什么?首先我们可以定义集合这一概念(集合的本质就是它和元素的关系只有属于和不属于这两种)以及集合间的运算(我们知道它们都通过逻辑运算定义),它就是一切的原材料,有了它,我们就可以定义各种函数(定义域值域对应关系),构造代数结构(群环域等)以及自然数有理数实数等对象。此外人们还发明了类似“对于任意ε存在δ使得对于任意的……”这样的纯逻辑论述,而这就是所有极限概念定义的基本模式。有了对极限这一逻辑概念的理解我们就可以进一步构造拓扑,测度空间结构以及定义所有数学分析(微积分泛函等)的内容。这样,庞大的数学知识体系由此建立,而这一切只是源于那两条基本假设,就是非真即假以及它们之间的运算规则。我想应该没有再简单的假设了,因为如果只有一种状态,都没差别,就翻不出什么花样了。在 Jaynes 的广义逻辑(extended logic)中,同样有三条而不是二条基本假设(书中叫做 desiderata)。第一条说的也是取值,是实数(注意实数就是用狭义逻辑定义的对象),第二三条定义了运算规则,其中第二条假设说的是大小比较(所以在狭义逻辑中就不需要这条了)。
评分现在回过头来再看看这本书的前言,只能说,庆幸自己能看到 E. T. Jaynes 的这本了用半个世纪完成的著作。因为就在几年前的概率论课上我学的还是那种由一些基本的奇怪的论述构建起的令人十分不安的理论,比如说扔一个均匀硬币头朝上的概率是二分之一(你要证实这一点只要扔无数次就知道了),再比如从一个有7个红球和3个白球的黑箱中拿到红球的概率是7/10诸如此类的经典论述,还有那难懂的随机变量。我想这样的不安是因为与其它的数学理论相比,传统的概率论不是从一个简单的一致的假设出发推导出来的,而是基于人们的直观判断(我们都会接受“扔均匀硬币头朝上的概率是二分之一”这样的论述,虽然它永远无法被证实)。所有这些传统概率论的基础其实都是从测量频率的物理实验中得出的一些直观论断,这种根本上的无法清楚的解释使得这种概率论以及由此建立的统计学从来不能像其它数学理论那样从自然或社会中抽离出来。
评分这本书介绍的概率论通俗易懂,包含全面
评分。。。。。。。。。。
评分还不错,纸张很好
评分不错的书,比较适合自己,内容很详细
评分评分
我们这届第一次用,感觉书中内容很偏基础,理论有点多,但是质量很高。
本站所有内容均为互联网搜索引擎提供的公开搜索信息,本站不存储任何数据与内容,任何内容与数据均与本站无关,如有需要请联系相关搜索引擎包括但不限于百度,google,bing,sogou 等
© 2025 book.idnshop.cc All Rights Reserved. 静思书屋 版权所有