高等数学(下)(英文版)/高等院校双语教学规划教材 [Advanced Mathematics 2]

高等数学(下)(英文版)/高等院校双语教学规划教材 [Advanced Mathematics 2] pdf epub mobi txt 电子书 下载 2025

东南大学大学数学教研室 编
图书标签:
  • 高等数学
  • 数学
  • 微积分
  • 双语教学
  • 英文教材
  • 大学教材
  • 理工科
  • 进阶数学
  • Calculus
  • Advanced Mathematics
想要找书就要到 静思书屋
立刻按 ctrl+D收藏本页
你会得到大惊喜!!
出版社: 东南大学出版社
ISBN:9787564154820
版次:1
商品编码:11659304
包装:平装
丛书名: 高等院校双语教学规划教材
外文名称:Advanced Mathematics 2
开本:16开
出版时间:2015-01-01
用纸:胶版纸
页数:325
字数:411000
正文语种:英文

具体描述

内容简介

  《高等数学(下)(英文版)/高等院校双语教学规划教材》是为响应东南大学国际化需要,根据国家教育部非数学专业数学基础课教学指导分委员会制定的工科类本科数学基础课程教学基本要求,并结合东南大学数学系多年教学改革实践经验编写的全英文教材。
  《高等数学(下)(英文版)/高等院校双语教学规划教材》分为上、下两册,内容包括极限、一元函数微分学、一元函数积分学、常微分方程、级数、向量代数与空间解析几何、多元函数微分学、多元函数积分学、向量场的积分、复变函数等十个章节。
  《高等数学(下)(英文版)/高等院校双语教学规划教材》可作为高等理工科院校非数学类专业本科生学习高等数学课程的英文教材,也可供其他专业选用和社会读者阅读。

内页插图

目录

Chapter 5 Infinite Series
§5.1.1 The Concept of Infinite Series
§5.2 Tests for Convergence of Positive Series
§5.3 Alternating Series, Absolute Convergence, and Conditional
§5.3.2 Absolute Convergence and Conditional Convergence
§5.4.1 Tests for the Improper Integrals: Infinite Limits of
§5.4.2 Tests for the Improper Integrals: Infinite Integrands
§5.5.2 Uniform Convergence of Series
§5.5.3 Properties of Uniformly Convergent Functional Series
§5.6.1 The Radius and Interval of Convergence
§5.6.3 Expanding Functions into Power Series
§5.7.1 The Concept of Fourier Series
§5.7.2 Fourier Sine and Cosine Series
§5.7.3 Expariding Functions with Arbitrary Period

Chapter 6 Vectors and Analytic Geometry in Space
§6.1.2 Linear Operations on Vectors
§6.1.3 Dot Products and Cross Product
§6.2 0perations on Vectors in Cartesian Coordinates in Three Space
§6.2.1 Cartesian Coordinates in Three Space
§6.2.2 0perations on Vectors in Cartesian Coordinates
§6.3.1 Equations for Plane
§6.3.3 Some Problems Related to Lines and Planes
§6.4.2 Curvesin Space
§6.4.4 QuadricSurfaces
……

Chapter 7 Multivariable Functions and Partial Derivatives
Chapter 8 Multiple Integrals
Chapter 9 Integration in Vectors Field
Chapter 10 Complex Analysis

前言/序言


经典力学导论:理论与应用 作者: [此处填写作者姓名] 出版社: [此处填写出版社名称] ISBN: [此处填写ISBN号] --- 本书简介 《经典力学导论:理论与应用》是一部面向物理学、工程学以及相关交叉学科高年级本科生和初级研究生的权威教材。本书旨在为读者提供坚实的经典力学基础,深入剖析牛顿力学、拉格朗日力学、哈密顿力学等核心理论框架,并重点展示这些理论在解决实际物理问题中的强大应用能力。 本书的编纂遵循循序渐进、理论与实践紧密结合的原则。我们深知,经典力学不仅是物理学的基石,更是理解更复杂理论(如量子力学和广义相对论)的必经之路。因此,我们不仅关注“如何计算”,更注重“为何如此构建”的物理和数学逻辑。 第一部分:牛顿力学的再审视与深化 全书伊始,我们并未停留在高中或初级大学课程中对牛顿定律的简单复述。第一部分致力于将牛顿力学提升到更严谨的数学和物理高度。 1. 运动学的精确描述: 详细讨论了描述物体运动所需的坐标系选择,包括笛卡尔坐标系、柱坐标系、球坐标系以及非惯性系(如旋转参考系)。在非惯性系中,对科里奥利力、离心力和欧拉力进行了详尽的推导和物理意义的阐释,为后续处理宏观系统(如地球上的流体运动)打下基础。 2. 动力学基础: 在严格定义质量、力以及动量和角动量的基础上,系统推导了牛顿第二定律在不同参考系下的形式。特别关注了变质量系统的处理(如火箭推进问题),通过动量定理的积分形式,展示了如何处理系统边界条件的改变。 3. 约束与广义坐标: 引入了约束力的概念,并区分了完整约束与非完整约束。这是向分析力学过渡的关键一步。通过对平面机构和三维运动的实例分析,阐明了引入约束力往往会使问题复杂化,从而引出采用更本质的自由度描述系统的必要性。 4. 碰撞与散射: 对一维和三维弹性、非弹性碰撞进行了深入分析,特别是引入了曼彻斯特散射的几何和动量分析。相对论效应在高速碰撞中的引入,作为对经典理论局限性的初步探讨。 第二部分:分析力学的核心——拉格朗日力学 第二部分是本书的核心,全面介绍了分析力学的强大框架——拉格朗日力学。这部分内容将使读者摆脱对“力”这一概念的直接依赖,转而使用能量泛函和变分原理来描述系统的演化。 5. 虚功原理与达朗贝尔原理: 从工作和虚位移的概念出发,严谨地推导了静力学中的虚功原理。随后,将该原理扩展到动力学,得到达朗贝尔原理,这是连接牛顿力学和拉格朗日力学的桥梁。 6. 拉格朗日方程的建立: 详细讲解了拉格朗日量 $L = T - V$ 的构建方法,其中 $T$ 是动能,$V$ 是势能。通过对一系列经典系统的求解(包括单摆、双摆、耦合振子、弹簧-质量系统),读者将熟练掌握如何根据系统的几何构型和动力学特性写出拉格朗日量,并应用欧拉-拉格朗日方程。 7. 守恒定律与诺特定理: 诺特定理是物理学中最深刻的对称性与守恒量之间的关系体现。本章深入探讨了系统的连续对称性(如时间平移不变性、空间平移不变性和转动不变性)如何必然导致能量、动量和角动量守恒。通过具体的例子,展示了如何利用这些守恒量来简化问题的求解。 8. 约束力的处理与坐标变换: 阐述了在拉格朗日框架下,完整约束如何自动被广义坐标吸收。同时,系统性地讨论了坐标变换(包括卡尔丹、欧拉角等),以及坐标变换下能量和动量的相对变化,加深对坐标系选择自由度的理解。 第三部分:向更深层次的迈进——哈密顿力学 第三部分将分析力学的描述提升至相空间的概念,引入哈密顿力学,为量子力学的形成做必要的准备。 9. 勒让德变换与哈密顿量: 详细介绍了如何通过勒让德变换将拉格朗日量(依赖于广义坐标 $q_i$ 和广义速度 $dot{q}_i$)转化为哈密顿量(依赖于广义坐标 $q_i$ 和共轭动量 $p_i$)。本书强调了共轭动量 $p_i = partial L / partial dot{q}_i$ 的物理意义及其在新的相空间结构中的核心地位。 10. 哈密顿正则方程: 推导并阐述了哈密顿正则方程,这是哈密顿力学的运动方程。通过分析二维振子和简单的保守系统,展示了哈密顿方程相比于拉格朗日方程在数学形式上的简洁性和对称性。 11. 泊松括号与正则变换: 引入泊松括号作为描述物理量之间相互作用的代数结构。讨论了泊松括号的性质及其与守恒定律的关系(如“常数”泊松括号)。随后,系统介绍了正则变换的理论,证明了任何保持哈密顿方程形式不变的坐标变换都是正则的,这为寻找更易解的形式提供了强大的工具。 12. 经典系统的微扰论: 针对那些无法精确求解的复杂系统,本章详细介绍了时间依赖和时间无关的微扰理论。通过对一个受到微小外部作用的谐振子系统的分析,展示了如何利用微扰方法估算系统的响应,这是处理实际物理问题时不可或缺的技能。 第四部分:高级应用与拓展 最后一部分将理论知识应用于具有普遍性和重要性的具体物理场景。 13. 刚体的动力学: 刚体运动是多体系统动力学的经典范例。本章从欧拉角描述出发,推导了刚体转动的拉格朗日量和哈密顿量。重点分析了陀螺仪的进动和章动问题,并引入了刚体转动惯量张量的对角化,为理解高对称性刚体提供了数学工具。 14. 经典场论的初步: 扩展了点粒子力学的概念,引入了连续介质和场的概念。通过最小作用量原理在场论中的应用,导出了欧拉-拉格朗日偏微分方程,为电磁场和弹性场的分析奠定了基础。 15. 经典力学与量子力学的桥梁: 本章总结了经典力学在何处失效,并回顾了其在连接到量子理论中的作用。讨论了相空间中的相轨迹密度演化(刘维尔定理),以及相空间函数到量子算符的对应关系,使得读者对经典力学在现代物理中的地位有一个清晰的认识。 --- 本书特色: 数学严谨性与物理直观的平衡: 确保所有推导过程的数学完备性,同时不牺牲对物理图像的深刻洞察。 丰富的例题与习题: 书中穿插了大量的具体计算实例,并在每章末尾设置了难度分层的习题,以巩固读者的理解和计算能力。 强调原理的普适性: 重点阐述拉格朗日和哈密顿原理作为基础数学结构的重要性,而非仅仅是求解牛顿方程的替代方法。 本书是深入探索物理世界运行规律的有力工具,适合那些希望掌握分析力学这一强大理论框架,并将其应用于解决复杂物理难题的求知者。

用户评价

评分

这本《高等数学(下)(英文版)》的出现,对于我这个一直以来在数学学习道路上颇感坎坷的学生来说,简直就像黑暗中的一道曙光。之前接触的中文版高等数学教材,虽然内容翔实,但常常因为艰深的数学术语和晦涩的逻辑推导让我倍感吃力,一度对高等数学产生了畏惧心理。当我在书店偶然翻开这本书时,立刻被它清晰的排版和地道的英文表达所吸引。我花了好几个小时仔细阅读了其中的几个章节,尤其是关于多元函数微分和积分的部分。作者在讲解时,并没有一味地堆砌公式,而是巧妙地融入了大量直观的几何解释和实际应用案例,让我能够从更宏观的角度去理解抽象的数学概念。例如,在讲解方向导数时,它不仅仅给出了定义和计算方法,还引用了坡度、温度分布等生活中的例子,让我瞬间茅塞顿开,明白了它到底在描述什么。而且,英文版的语言风格更加简洁明了,没有中文教材中那种绕来绕去的修辞,让我能够更专注于数学本身的逻辑。我特别欣赏的是,它还为每个定理都提供了详尽的证明过程,但这些证明过程又不会让人感到枯燥乏味,反而像是在引导读者一步步地探索数学的奥秘。虽然我还没有完全掌握所有内容,但可以肯定地说,这本书已经极大地激发了我深入学习高等数学的兴趣。

评分

在我看来,一本优秀的教材,除了能够清晰地传授知识,还应该能够点燃学生的学习热情。这本《高等数学(下)(英文版)》无疑做到了这一点。我之前对向量微积分和场论的概念一直感到非常困惑,总觉得这些内容过于抽象,与实际应用脱节。然而,这本书用一种前所未有的方式解决了我的困惑。在讲解斯托克斯定理和高斯散度定理时,作者没有简单地罗列公式,而是通过生动的图示和形象的比喻,将这些复杂的定理与流体力学、电磁学等领域的实际问题紧密联系起来。我尤其喜欢书中对于“散度”和“旋度”的解释,它们不再是冷冰冰的数学符号,而是变成了描述物质流动或旋转特性的直观概念,这让我一下子就理解了它们在物理学中的重要作用。此外,本书的英文表述也十分地道,用词精准,句子流畅,使得理解起来毫不费力。它所提供的例题和习题,难度适中,能够帮助我逐步掌握知识点,并且也能够对一些更深层次的问题进行思考。总的来说,这本书在帮助我理解抽象数学概念的同时,也让我看到了数学在解决实际问题中的强大力量,极大地提升了我学习这门学科的积极性。

评分

说实话,我之前对高等数学的许多内容都感到力不从心,总觉得像是在与一堆难以理解的符号和公式作斗争。然而,当我开始阅读这本《高等数学(下)(英文版)》时,我的感觉彻底改变了。这本书最让我感到欣慰的是它的“双语教学”的理念,虽然是以英文为主,但它在内容的编排和讲解上,都充分考虑到了非母语学习者的需求。我特别喜欢书中在引入新概念时,总是先给出直观的解释,然后才是严谨的数学定义。例如,在讲解曲线积分时,它用“在一条曲线上进行的‘累加’过程”来类比,让我一下子就抓住了核心思想。而且,英文版的表达方式也更加直接和简洁,许多在中文教材中容易被忽略的细节,在这本书中都得到了细致的阐述。书中的图例设计也非常精美,很多抽象的概念通过这些图示变得一目了然。我尤其喜欢它关于向量场的讲解,那栩栩如生的向量场图,让我仿佛能够看到流体的运动和力的分布。对于那些和我一样,在数学学习上曾遇到过困难的同学,我强烈推荐这本书,它真的能够帮助你打开新的学习思路,并且让你感受到数学的魅力。

评分

作为一名对数学理论有着浓厚兴趣的研究生,我一直希望能够找到一本能够帮助我深入理解高等数学精髓的教材。市面上的中文教材虽然内容全面,但往往侧重于计算技巧的训练,而对数学思想的阐述则相对不足。然而,这本《高等数学(下)(英文版)》则给了我全新的视角。它在讲解内容时,不仅仅停留在定理的陈述和公式的推导,而是着重于揭示数学概念的形成过程和理论背景。例如,在介绍无穷级数时,它不仅详细讲解了收敛性的判别方法,还深入探讨了幂级数与函数之间的深刻联系,以及它在泰勒展开等领域的应用。作者在书中引用了大量历史上的数学家如何发现这些定理的过程,这让我感觉自己仿佛置身于一个数学思想的殿堂,与那些伟大的头脑进行着跨越时空的对话。书中的习题设计也极具匠心,既有巩固基础的练习,也有启发思考的挑战性题目,有些题目甚至需要结合多个章节的知识点才能解决,这对于培养我的分析能力和解决复杂问题的能力非常有帮助。总而言之,这本书不仅仅是一本教材,更是一部引导我进行深入数学研究的指南,它让我看到了高等数学背后更加广阔的天地。

评分

对于那些正在准备考研或者进行相关领域学习的学生来说,一本高质量的复习资料是至关重要的。这本《高等数学(下)(英文版)》无疑是我近期遇到的最令我惊喜的教材之一。虽然我并非打算将其作为唯一的复习教材,但它所提供的补充性视角和深度分析,对我来说价值非凡。书中的内容组织逻辑清晰,章节之间的过渡自然流畅,这使得我在复习过程中能够快速地找到我需要的知识点,并且能够建立起完整的知识体系。我特别欣赏它在处理一些经典难题时的解析方法,作者往往会从不同的角度提供多种解题思路,并详细分析每种方法的优劣,这对于我提升解题技巧,培养灵活的思维方式非常有益。此外,书中还穿插了一些关于数学史的趣闻和背景知识,这让枯燥的复习过程变得生动有趣,也帮助我更好地理解数学定理的来龙去脉。我对于书中关于多元函数极值问题、二重积分和三重积分计算的讲解印象深刻,它不仅仅停留在计算技巧上,更深入地剖析了这些概念的几何意义和物理背景,让我对这些内容有了更加深刻的理解。

评分

这本书没有ppt,内容和国外的教程类似,没有新意。但是大学生可以参考。

评分

啊 啊 谁来 少哦少 少i哦哦哦哦哦哦

评分

不错

评分

大学进入校园就应该合理规划自己的大学生涯,英语和数学兼得。

评分

大学进入校园就应该合理规划自己的大学生涯,英语和数学兼得。

评分

下次还来快递很快质量很好下次还来

评分

第一次买英文版的高数,看看有困难。

评分

第一次买英文版的高数,看看有困难。

评分

不错,书的质量很好,物流也很快!

相关图书

本站所有内容均为互联网搜索引擎提供的公开搜索信息,本站不存储任何数据与内容,任何内容与数据均与本站无关,如有需要请联系相关搜索引擎包括但不限于百度google,bing,sogou

© 2025 book.idnshop.cc All Rights Reserved. 静思书屋 版权所有