权威教材,内容比较全,正在看
评分很好的
评分世代数即抽象代数。 代数是数学的其中一门分支,当中可大致分为初等代数学和抽象代数学两部分。初等代数学是指19世纪上半叶以前发展的方程理论,主要研究某一方程〔组〕是否可解,如何求出方程所有的根〔包括近似根〕,以及方程的根有何性质等问题。法国数学家伽罗瓦〔1811-1832〕在1832年运用「群」的思想彻底解决了用根式求解代数方程的可能性问题。他是第一个提出「群」的思想的数学家,一般称他为近世代数创始人。他使代数学由作为解方程的科学转变为研究代数运算结构的科学,即把代数学由初等代数时期推向抽象代数即近世代数时期。抽象代数学对于全部现代数学和一些其它科学领域都有重要的影响。抽象代数学随着数学中各分支理论的发展和应用需要而得到不断的发展。经过伯克霍夫、冯.诺伊曼、坎托罗维奇和斯通等人在1933-1938年所做的工作,格论确定了在代数学的地位。而自20世纪40年代中叶起,作为线性代数的推广的模论得到进一步的发展并产生深刻的影响。泛代数、同调代数、范畴等新领域也被建立和发展起来。抽象代数在上一个世纪已经有了良好的开端,伽罗瓦在方程求根中就蕴蓄了群的概念。后来凯利对群作了抽象定义(Cayley,1821~1895)。他在1849年的一项工作里提出抽象群的概念,可惜没有引起反响。“过早的抽象落到了聋子的耳朵里”。直到1878年,凯利又写了抽象群的四篇文章才引起注意。1874年,挪威数学家索甫斯·李(Sophus Lie, 1842~1899)在研究微分方程时,发现某些微分方程解对一些连续变换群是不变的,一下子接触到连续群。1882年,英国的冯·戴克(von Dyck,1856~1934)把群论的三个主要来源—方程式论,数论和无限变换群—纳入统一的概念之中,并提出“生成元”概念。20世纪初给出了群的抽象公理系统。
评分邱老师的书,精品,近世代数也是很多现代数学艰深理论的基础,想学其它的,先学群环域吧
评分舒尔(Schur,1875~1941)于1901年提出有限群表示的问题。群特征标的研究由弗罗贝尼乌斯首先提出。庞加莱对群论抱有特殊的热情,他说:“群论就是那摒弃其内容而化为纯粹形式的整个数学。”这当然是过分夸大了。
评分为了了解一下近世代数而买的自学书。
评分正版书籍,丘维声老师的作品,值得学习收藏
评分好
评分作者受聘在西安交大数学拔尖班讲课所用教材,还附了习题解答。
本站所有内容均为互联网搜索引擎提供的公开搜索信息,本站不存储任何数据与内容,任何内容与数据均与本站无关,如有需要请联系相关搜索引擎包括但不限于百度,google,bing,sogou 等
© 2025 book.idnshop.cc All Rights Reserved. 静思书屋 版权所有