| 書名: | 純數學教程(英文版·第10版)|17149 |
| 圖書定價: | 65元 |
| 圖書作者: | (英)G.H.Hardy |
| 齣版社: | 機械工業齣版社 |
| 齣版日期: | 2004/2/1 0:00:00 |
| ISBN號: | 711113785X |
| 開本: | 16開 |
| 頁數: | 509 |
| 版次: | 10-1 |
| 作者簡介 |
| 6. H.Hardy英國數學傢(1877—1947)。1896年考入劍橋三一學院,並子1900年在劍橋獲得史密斯奬。之後,在英國牛津大學。劍橋大學任教,是20世紀初著名的數學分析傢之一。 他的貢獻包括數論中的丟番圖逼近、堆壘數論、素數分布理論與黎曼函數,調和分析中的三角級數理論。發散級數求和與陶伯定理。不等式、積分變換與積分方程等方麵,對分析學的發展有深刻的影響。以他的名字命名的Hp空間(哈代空間),至今仍是數學研究中十分活躍的領域。 除本書外,他還著有《不等式》、《發散級數》等10多部書籍與300多篇文章。 |
| 內容簡介 |
| 自從1908年齣版以來,這本書已經成為一部經典之著。一代又一代嶄露頭角的數學傢正是通過這本書的指引,步入瞭數學的殿堂。 在本書中,作者懷著對教育工作的無限熱忱,以一種嚴格的純粹學者的態度,揭示瞭微積分的基本思 想、無窮級數的性質以及包括極限概念在內的其他題材。 |
| 目錄 |
CONTENTS (Entries in small print at the end of the contents of each chapter refer to subjects discussed incidentally in the examples) CHAPTER I REAL VARIABLES SECT. 1-2. Rational numbers 3-7. Irrational numbers 8. Real numbers 9. Relations of magnitude between real numbers 10-11. Algebraical operations with real numbers 12. The number 2 13-14. Quadratic surds 15. The continum 16. The continuous real variable 17. Sections of the real numbers. Dedekind's theorem 18. Points of accumulation 19. Weierstrass's theorem . Miscellaneous examples CHAPTER II FUNCTIONS OF REAL VARIABLES 20. The idea of a function 21. The graphical representation of functions. Coordinates 22. Polar coordinates 23. Polynomias 24-25. Rational functions 26-27. Aigebraical functious 28-29. Transcendental functions 30. Graphical solution of equations 31. Functions of two variables and their graphical repre- sentation 32. Curves in a plane 33. Loci in space Miscellaneous examples CHAPTER III COMPLEX NUMBERS SECT. 34-38. Displacements 39-42. Complex numbers 43. The quadratic equation with real coefficients 44. Argand's diagram 45. De Moivre's theorem 46. Rational functions of a complex variable 47-49. Roots of complex numbers Miscellaneous examples CHAPTER IV LIMITS OF FUNCTIONS OF A POSITIVE INTEGRAL VARIABLE 50. Functions of a positive integral variable 51. Interpolation 52. Finite and infinite classes 53-57. Properties possessed by a function of n for large values of n 58-61. Definition of a limit and other definitions 62. Oscillating functions 63-68. General theorems concerning limits 69-70. Steadily increasing or decreasing functions 71. Alternative proof of Weierstrass's theorem 72. The limit of xn 73. The limit of(1+ 74. Some algebraical lemmas 75. The limit of n(nX-1) 76-77. Infinite series 78. The infinite geometrical series 79. The representation of functions of a continuous real variable by means of limits 80. The bounds of a bounded aggregate 81. The bounds of a bounded function 82. The limits of indetermination of a bounded function 83-84. The general principle of convergence 85-86. Limits of complex functions and series of complex terms 87-88. Applications to zn and the geometrical series 89. The symbols O, o, Miscellaneous examples CHAPTER V LIMITS OF FUNCTIONS OF A CONTINUOUS VARIABLE. CONTINUOUS AND DISCONTINUOUS FUNCTIONS 90-92. Limits as x-- or x--- 93-97. Limits as z-, a 98. The symbols O, o,~: orders of smallness and greatness 99-100. Continuous functions of a real variable 101-105. Properties of continuous functions. Bounded functions. The oscillation of a function in an interval 106-107. Sets of intervals on a line. The Heine-Borel theorem 108. Continuous functions of several variables 109-110. Implicit and inverse functions Miscellaneous examples CHAPTER VI DERIVATIVES AND INTEGRALS 111-113. Derivatives 114. General rules for differentiation 115. Derivatives of complex functions 116. The notation of the differential calculus 117. Differentiation of polynomials 118. Differentiation of rational functions 119. Differentiation of algebraical functions 120. Differentiation of transcendental functions 121. Repeated differentiation 122. General theorems concerning derivatives, Rolle's theorem 123-125. Maxima and minima 126-127. The mean value theorem 128. Cauchy's mean value theorem SECT. 129. A theorem of Darboux 130-131. Integration. The logarithmic function 132. Integration of polynomials 133-134. Integration of rational functions 135-142. Integration of algebraical functions. Integration by rationalisation. Integration by parts 143-147. Integration of transcendental functions 148. Areas of plane curves 149. Lengths of plane curves Miscellaneous examples CHAPTER VII ADDITIONAL THEOREMS IN THE DIFFERENTIAL AND INTEGRAL CALCULUS 150-151. Taylor's theorem 152. Taylor's series 153. Applications of Taylor's theorem to maxima and minima 154. The calculation of certain limits 155. The contact of plane curves 156-158. Differentiation of functions of several variables 159. The mean value theorem for functions of two variables 160. Differentials 161-162. Definite integrals 163. The circular functions 164. Calculation of the definite integral as the limit of a sum 165. General properties of the definite integral 166. Integration by parts and by substitution 167. Alternative proof of Taylor's theorem 168. Application to the binomial series 169. Approximate formulae for definite integrals. Simpson's rule 170. Integrals of complex functions Miscellaneous examples CHAPTER VIII THE CONVERGENCE OF INFINITE SERIES AND INFINITE INTEGRALS SECT. PAGE 171-174. Series of positive terms. Cauchy's and d'Alembert's tests of convergence 175. Ratio tests 176. Dirichlet's theorem 177. Multiplication of series of positive terms 178-180. Further tests for convergence. Abel's theorem. Mac- laurin's integral test 181. The series n-s 182. Cauchy's condensation test 183. Further ratio tests 184-189. Infinite integrals 190. Series of positive and negative terms 191-192. Absolutely convergent series 193-194. Conditionally convergent series 195. Alternating series 196. Abel's and Dirichlet's tests of convergence 197. Series of complex terms 198-201. Power series 202. Multiplication of series 203. Absolutely and conditionally convergent infinite integrals Miscellaneous examples CHAPTER IX THE LOGARITHMIC, EXPONENTIAL, AND CIRCULAR FUNCTIONS OF A REAL VARIABLE 204-205. The logarithmic function 206. The functional equation satisfied by log x 207-209. The behaviour of log x as x tends to infinity or to zero 210. The logarithmic scale of infinity 211. The number e 212-213. The exponential function 214. The general power ax 215. The exponential limit 216. The logarithmic limit SECT. 217. Common logarithms 218. Logarithmic tests of convergence 219. The exponential series 220. The logarithmic series 221. The series for arc tan x 222. The binomial series 223. Alternative development of the theory 224-226. The analytical theory of the circular functions Miscellaneous examples CHAPTER X THE GENERAL THEORY OF THE LOGARITHMIC, EXPONENTIAL, AND CIRCULAR FUNCTIONS 227-228. Functions of a complex variable 229. Curvilinear integrals 230. Definition of the logarithmic function 231. The values of the logarithmic function 232-234. The exponential function 235-236. The general power a 237-240. The trigonometrical and hyperbolic functions 241. The connection between the logarithmic and inverse trigonometrical functions 242. The exponential series 243. The series for cos z and sin z 244-245. The logarithmic series 246. The exponential limit 247. The binomial series Miscellaneous examples The functional equation satisfied by Log z, 454. The function e, 460. Logarithms to any base, 461. The inverse cosine, sine, and tangent of a complex number, 464. Trigonometrical series, 470, 472-474, 484, 485. Roots of transcendental equations, 479, 480. Transformations, 480-483. Stereographic projection, 482. Mercator's projection, 482. Level curves, 484-485. Definite integrals, 486. APPENDIX I. The proof that every equation has a root APPENDIX II. A note on double limit problems APPENDIX III. The infinite in analysis and geometry APPENDIX IV. The infinite in analysis and geometry INDEX |
在一次偶然的機會下,我接觸到瞭《純數學教程》(第10版)。坦白說,起初我對這類“純數學”的圖書抱有一種敬畏甚至是畏懼的態度,總覺得它們離我所理解的“實用”知識太過遙遠。然而,這本教程徹底顛覆瞭我的固有印象。它所展現的數學之美,是一種純粹的、邏輯的、嚴謹的美。Hardy的寫作風格,仿佛一位技藝高超的建築師,精心設計每一個章節,將復雜的數學結構搭建得既穩固又充滿藝術感。我尤其欣賞他對於數學證明的嚴謹性要求,每一個推導都環環相扣,不留一絲含糊。這對於培養嚴謹的邏輯思維能力有著不可估量的價值。我曾花大量時間去理解一個看似簡單的命題,正是通過Hardy的引導,我纔意識到,數學的深刻之處往往隱藏在那些最基本的定義和公理之中。這種對基礎的重視,讓我受益匪淺,無論是在學習後續更高級的數學課程,還是在解決實際問題時,那種嚴謹的分析方法都成瞭我解決問題的利器。這本書不僅僅是傳授知識,更是一種思維方式的塑造。
評分作為一名對數學充滿好奇的自學者,我曾嘗試過許多不同的教材,但《純數學教程》(英文版第10版)是我至今為止最滿意的一本。它就像一本數學的百科全書,但又不失引導性和啓發性。Hardy的講解風格非常獨特,他善於用簡潔而優美的語言,將復雜的數學概念娓娓道來。我特彆喜歡他對於數學邏輯性的強調,書中每一個定理的證明都力求做到滴水不漏,這對我培養嚴謹的邏輯分析能力起到瞭至關重要的作用。我曾反復閱讀書中關於集閤論和拓撲學的章節,每一次閱讀都有新的體會。Hardy並沒有把這些概念生硬地拋給讀者,而是循序漸進地構建起一個嚴密的理論框架,讓讀者在不知不覺中掌握瞭核心的思想。這本書的另一個優點是它的深度和廣度兼具。它既深入探討瞭純數學的各個分支,又對這些分支之間的聯係進行瞭清晰的梳理,讓我能夠對整個數學體係有一個宏觀的認識。我常常會因為它書中引申齣的某個話題而深入研究,這種“授人以漁”的學習方式,是我在其他教材中很少獲得的。
評分這本《純數學教程》在我數學學習的道路上扮演瞭至關重要的角色。我還記得第一次翻開它時的心情,既好奇又帶著一絲忐忑。畢竟,純數學聽起來就充滿瞭挑戰。然而,Hardy的文字以一種意想不到的清晰和優雅,將那些抽象的概念展現在我眼前。他對數學的深刻理解,以及他引導讀者一步步深入探索的熱情,是如此具有感染力。初學時,我可能隻是囫圇吞棗般地理解瞭一些基本定理,但隨著時間的推移,我越來越能體會到其中精妙之處。比如,書中對微積分基礎的闡述,不僅僅是公式的堆砌,更是對極限、連續性等概念的嚴謹邏輯推導,這讓我對整個數學體係有瞭更堅實的基礎認知。我特彆喜歡他在引入新概念時,總是會先從一個直觀的例子或者一個類比開始,這極大地降低瞭學習的門檻,讓我能夠更好地將抽象的數學語言與現實世界聯係起來。即便是現在迴想起,我依然能清晰地迴憶起某些證明過程中的關鍵步驟,那種豁然開朗的感覺,至今仍令我迴味無窮。這本書不僅僅是一本教材,更像是一位耐心的導師,引領著我在數學的廣闊天地裏徜徉。
評分我一直對數學充滿熱情,但有時會因為概念的抽象和證明的繁復而感到睏惑。《純數學教程》(英文版第10版)這本書,就像一道數學界的清泉,洗滌瞭我心中的迷茫。Hardy的文字,與其說是教學,不如說是數學的藝術錶達。他能夠將最抽象的數學思想,用最直觀、最富有詩意的方式呈現齣來。我尤其欣賞他在講解數論和代數結構時所展現齣的洞察力。他並不滿足於僅僅給齣定義和公式,而是深入剖析瞭這些概念的內在邏輯和它們之間的微妙聯係。我曾經花瞭整整一個下午去琢磨書中關於“素數分布”的某個猜想,Hardy的講解讓我從全新的角度理解瞭這個問題的復雜性和它的迷人之處。這本書不僅僅是知識的傳遞,更是一種對數學精神的傳承。它讓我明白,數學並非冷冰冰的計算,而是充滿創造力和想象力的探索過程。我常常在閱讀時,感受到一種與Hardy在思想上的共鳴,仿佛他就在我的耳邊,細語著數學的奧秘。
評分我一直認為,學習數學,尤其是純數學,需要一種沉浸式的體驗,而《純數學教程》(英文版第10版)恰恰提供瞭一個這樣的絕佳環境。它並非那種為瞭應付考試而設計的速成指南,而是真正緻力於讓讀者理解數學的本質。Hardy用他獨到的視角,將看似枯燥的公式和定理賦予瞭生命。我記得在學習級數那一章時,最初感到非常吃力,但Hardy通過引入一些有趣的數列和與之相關的幾何圖形,將抽象的收斂概念具體化,讓我眼前一亮。他不僅僅是展示“是什麼”,更是深入挖掘“為什麼”,這種探究式的寫作風格,極大地激發瞭我的學習興趣。我喜歡他在講解中穿插的一些曆史典故和數學傢的故事,這讓冰冷的數學充滿瞭人性的溫度,也讓我看到瞭數學發展的艱辛與輝煌。這本書對我最大的影響,在於它教會我如何去“思考”數學,而不是僅僅去“記憶”數學。這種由內而外的學習體驗,讓我對數學産生瞭前所未有的親近感。
評分謝謝!
評分謝謝!
評分謝謝!
評分謝謝!
評分謝謝!
評分不錯
評分不錯
評分謝謝!
評分不錯
本站所有内容均为互联网搜索引擎提供的公开搜索信息,本站不存储任何数据与内容,任何内容与数据均与本站无关,如有需要请联系相关搜索引擎包括但不限于百度,google,bing,sogou 等
© 2025 book.tinynews.org All Rights Reserved. 静思书屋 版权所有