基本信息
书名:天元基金数学丛书:泛函分析
定价:46.40元
作者:[美] 拉克斯 著
出版社:高等教育出版社
出版日期:2007-02-01
ISBN:9787040216493
字数:
页码:580
版次:1
装帧:平装
开本:16开
商品重量:
编辑推荐
暂无相关内容
目录
Foreword
1. Linear Spaces
Axioms for linear spaces-Infinite-dimensional examples-Subspace, linear span-Quotient space-Isomorphism-Convex sets-Extreme subsets
2. Linear Maps
2.1 Algebra of linear maps,
Axioms for linear maps-Sums and composites-Invertible linear maps-Nullspace and range-Invariant subspaces
2.2. Index of a linear map,
Degenerate maps-Pseudoinverse-IndexmProduct formula for the index-Stability of the index
3. The Hahn,Banach Theorem
3.1 The extensiotheorem,
Positive homogeneous, subadditive functionals-Extensioof linear functionals-Gauge functions of convex sets
3.2 Geometric Hahn-Banach theorem,
The hyperplane separatiotheorem
3.3 Extensions of the Hahn-Banach theorem,
The Agnew-Morse theorem-The
Bohnenblust-Sobczyk-Soukhomlinov theorem
4. Applications of the Hahn-Banach theorem
4.1 Extensioof positive linear functionals,
4.2 Banach limits.
4.3 Finitely additive invariant set functions,
Historical note,
5. Normed Linear Spaces
5.1 Norms,
Norms for quotient spaces-Complete normed linear spaces-The spaces C, B-Lp spaces and H61ders inequality-Sobolev spaces, embedding theorems-Separable spaces
5.2 Noncompactness of the unit bail,
Uniform convexity-The Mazur-Ulam theorem oisometrics
5.3 Isometrics,
6. Hilbert Space
6.1 Scalar product,
Schwarz inequality Parallelogram identity——Completeness,closure-e2, L
6.2 Closest point ia closed convex subset, 54Orthogonal complement of a subspace-Orthogonal decomposition
6.3 Linear functionals,
The Riesz-Frechet representatiotheorem-Lax-Milgram lemma
6.4 Linear span,
Orthogonal projection-Orthonormal bases, Gram-Schmidt process-Isometries of a Hilbert space
7. Applications of Hilbert Space Results
7.1 Radon-Nikodym theorem,
7.2 Dirichlets problem,
Use of the Riesz-Frechet theorem-Use of the Lax-Milgram theorem Use of orthogonal decomposition
8. Duals of Normed Linear Spaces
8.1 Bounded linear functionals,
Dual space
8.2 Extensioof bounded linear functionals,
Dual characterizatioof norm-Dual characterizatioof distance from a subspace-Dual characterizatioof the closed linear spaof a set
8.3 Reflexive spaces,
Reflexivity of Lp, 1 < p < -Separable spaces-Separability of the dual-Dual of C(Q), Q compact-Reflexivity of subspaces
8.4 Support functioof a set,
Dual characterizatioof convex hull-Dual characterizatioof distance from a closed, convex set
9. Applications of Duality
9.1 Completeness of weighted powers,
9.2 The Muntz approximatiotheorem,
9.3 Rungestheorem,
9.4 Dual variational problems ifunctiotheory,
9.5 Existence of Greens function,
10. Weak Convergence
10.1 Uniform boundedness of weakly convergent sequences, 101 Principle of uniform boundedness-Weakly sequentially closed convex sets
10.2 Weak sequential compactness, 104 Compactness of unit ball ireflexive space
10.3 Weak* convergence, 105 Hellys theorem
11. Applications of Weak Convergence
11.1 Approximatioof the functioby continuous functions, 108 Toeplitzs theorem osummability
11.2 Divergence of Fourier series,
11.3 Approximate quadrature,
11.4 Weak and strong analyticity of vector-valued functions,
11.5 Existence of solutions of partial differential equations, 112 Galerkins method
11.6 The representatioof analytic functions with positive real part, 115 Hergiotz-Riesz theorem
12. The Weak and Weak* Topologies
Comparisowith weak sequential topology-Closed convex sets ithe weak topology——Weak compactness-Alaoglus theorem
13. Locally Convex Topologies and the Krein-MilmaTheorem
13.1 Separatioof points by linear functionals,
13.2 The Krein-Milmatheorem,
13.3 The Stone-Weierstrass theorem,
13.4 Choquets theorem,
14. Examples of Convex Sets and Their Extreme Points
14.1 Positivefunctionals,
14.2 Convex functions,
14.3 Completely monotone functions,
14.4 Theorems of Caratheodory and Bochner,
14.5 A theorem of Krein,
14.6 Positive harmonic functions,
14.7 The Hamburger moment problem,
14.8 G. Birkhoffs conjecture,
14.9 De Finettis theorem,
14.10 Measure-preserving mappings,
Historical note,
15. Bounded Linear Maps
15.1 Boundedness and continuity,
Norm of a bounded linear map-Transpose
15.2 Strong and weak topologies,
Strong and weak sequential convergence
15.3 Principle of uniform boundedness,
15.4 Compositioof bounded maps,
15.5 The opemapping principle,
Closed graph theorem Historical note,
16. Examples of Bounded Linear Maps
16.1 Boundedness of integral operators,
Integral operators of Hilbert-Schmidt type-Integral operators of Holmgretype
16.2 The convexity theorem of Marcel Riesz,
16.3 Examples of bounded integral operators,
The Fourier transform, Parsevals theorem and Hausdorff-Young inequality-The Hilbert transform The Laplace transform-The Hilbert-Hankel transform
……
A. Riesz-Kakutani representatiotheorem
B. Theory of distributions
C. Zorns Lemma
Author Index
Subject Index
内容提要
《泛函分析(版)》是美国科学院院士Peter D.Lax在CotJrant数学所长期讲授泛函分析课程的教学经验基础上编写的。《泛函分析(版)》括泛函分析的基本内容:Barlach空间、Hilbert空间和线性拓扑空间的基本概念和性质,线性拓扑空间中的凸集及其端点集的性质,有界线性算子的性质等。可作为本科生泛函分析课的教学内容;还括泛函分析较深的内容:自伴算子的谱分解理论。紧算子的理论,交换Barlach代数的Gelfand理论,不变子空间的理论等。可作为研究生泛函分析课的教学内容。《泛函分析(版)》特别强调泛函分析与其他数学分支的联系及泛函分析理论的应用,可以使读者深刻地理解到:抽象的泛函分析理论有着丰富的数学背景。
文摘
暂无相关内容
作者介绍
暂无相关内容
这本《泛函分析》的影印版,我之前就听说过,很多经典数学教材都有影印版,质量都挺不错的,这次拿到手,果然没有让我失望。拿到书的第一感觉就是纸张很厚实,那种老式的书页泛黄的感觉,透着一股子历史的厚重感,拿在手里沉甸甸的,很有分量。封面设计也比较简洁大气,虽然是影印版,但印刷清晰度很高,文字和公式都锐利得仿佛直接从原版复制而来,没有模糊不清或者重影的现象。我之前也看过一些国内出版的教材,有时候一些数学符号印刷得不够规范,或者字体大小不一致,但这本书在这方面处理得非常到位,完全还原了原著的风貌。对于我这样一个习惯了数字排版的人来说,一开始可能需要一点点适应,但很快就沉浸在这种“原汁原味”的阅读体验中了。
评分拿到这本《泛函分析》的影印版,我的第一感受是它所承载的“经典”分量。在现代科技日新月异的今天,我们能接触到如此原汁原味的国外经典教材,本身就是一种幸事。这本书的纸张手感和印刷质感,都给我一种非常扎实、可靠的感觉,仿佛手中握住的不是一本书,而是一段凝结了无数智慧的学术传承。我特别喜欢它保留下来的那种传统排版风格,虽然没有花哨的插图或设计,但每一个公式、每一个符号都显得那么精准和有力,传递出一种严谨的学术氛围。
评分翻阅这本《泛函分析》影印版,我最直观的感受是它对于数学符号和公式处理的精细程度。我曾经遇到过一些国内出版的书籍,在印刷数学公式时,一些细小的符号,比如向量箭头、撇号、或者一些复杂的积分符号,会显得模糊不清,甚至有些变形,这在阅读和理解上会造成一定的困扰。然而,这本书在这方面做得非常出色,每一个符号都清晰锐利,即使是同一个符号在不同的上下文中使用,其形状和大小也保持高度一致,这让我能够更专注于公式本身的含义,而不是被印刷质量所干扰。
评分我对这本书的版式和排版方式非常感兴趣。它保留了许多国外经典数学著作的特点,比如段落之间的缩进,以及一些页边空白的处理方式,都显得十分考究。而且,书中大量的数学公式和定理的展示方式,也与我们国内常见的风格有所不同。我特别注意到,一些推导过程中的中间步骤,作者似乎有意识地给读者留出了一定的思考空间,而不是一股脑儿地将所有细节都列出来。这对于我这种喜欢自己动手推导、验证的人来说,反而是极大的乐趣。有时候,读一本数学书,不仅仅是获取知识,更是一种与作者“对话”的过程,而这本书恰恰提供了这样一个机会,让我在阅读中能够更深入地思考和理解。
评分这本书的印刷质量真的给了我一个惊喜,完全超出了我的预期。我曾担心影印版的书,在细节上会有所折扣,比如一些小小的箭头、圆圈或者下标,印刷不清的话就会影响阅读和理解。然而,这本《泛函分析》在这方面做得相当出色。即便是在一些比较复杂的公式中,各种符号的组合和关系也清晰可见,没有丝毫的混淆。我甚至仔细翻看了几个定理的证明,那些细微的数学符号,比如各种希腊字母、上标、下标,甚至是积分和求和的符号,都印刷得非常干净利落。这对于需要精确理解数学概念的读者来说,简直是福音。
本站所有内容均为互联网搜索引擎提供的公开搜索信息,本站不存储任何数据与内容,任何内容与数据均与本站无关,如有需要请联系相关搜索引擎包括但不限于百度,google,bing,sogou 等
© 2025 book.idnshop.cc All Rights Reserved. 静思书屋 版权所有