基本信息
書名:天元基金數學叢書:泛函分析
定價:46.40元
作者:[美] 拉剋斯 著
齣版社:高等教育齣版社
齣版日期:2007-02-01
ISBN:9787040216493
字數:
頁碼:580
版次:1
裝幀:平裝
開本:16開
商品重量:
編輯推薦
暫無相關內容
目錄
Foreword
1. Linear Spaces
Axioms for linear spaces-Infinite-dimensional examples-Subspace, linear span-Quotient space-Isomorphism-Convex sets-Extreme subsets
2. Linear Maps
2.1 Algebra of linear maps,
Axioms for linear maps-Sums and composites-Invertible linear maps-Nullspace and range-Invariant subspaces
2.2. Index of a linear map,
Degenerate maps-Pseudoinverse-IndexmProduct formula for the index-Stability of the index
3. The Hahn,Banach Theorem
3.1 The extensiotheorem,
Positive homogeneous, subadditive functionals-Extensioof linear functionals-Gauge functions of convex sets
3.2 Geometric Hahn-Banach theorem,
The hyperplane separatiotheorem
3.3 Extensions of the Hahn-Banach theorem,
The Agnew-Morse theorem-The
Bohnenblust-Sobczyk-Soukhomlinov theorem
4. Applications of the Hahn-Banach theorem
4.1 Extensioof positive linear functionals,
4.2 Banach limits.
4.3 Finitely additive invariant set functions,
Historical note,
5. Normed Linear Spaces
5.1 Norms,
Norms for quotient spaces-Complete normed linear spaces-The spaces C, B-Lp spaces and H61ders inequality-Sobolev spaces, embedding theorems-Separable spaces
5.2 Noncompactness of the unit bail,
Uniform convexity-The Mazur-Ulam theorem oisometrics
5.3 Isometrics,
6. Hilbert Space
6.1 Scalar product,
Schwarz inequality Parallelogram identity——Completeness,closure-e2, L
6.2 Closest point ia closed convex subset, 54Orthogonal complement of a subspace-Orthogonal decomposition
6.3 Linear functionals,
The Riesz-Frechet representatiotheorem-Lax-Milgram lemma
6.4 Linear span,
Orthogonal projection-Orthonormal bases, Gram-Schmidt process-Isometries of a Hilbert space
7. Applications of Hilbert Space Results
7.1 Radon-Nikodym theorem,
7.2 Dirichlets problem,
Use of the Riesz-Frechet theorem-Use of the Lax-Milgram theorem Use of orthogonal decomposition
8. Duals of Normed Linear Spaces
8.1 Bounded linear functionals,
Dual space
8.2 Extensioof bounded linear functionals,
Dual characterizatioof norm-Dual characterizatioof distance from a subspace-Dual characterizatioof the closed linear spaof a set
8.3 Reflexive spaces,
Reflexivity of Lp, 1 < p < -Separable spaces-Separability of the dual-Dual of C(Q), Q compact-Reflexivity of subspaces
8.4 Support functioof a set,
Dual characterizatioof convex hull-Dual characterizatioof distance from a closed, convex set
9. Applications of Duality
9.1 Completeness of weighted powers,
9.2 The Muntz approximatiotheorem,
9.3 Rungestheorem,
9.4 Dual variational problems ifunctiotheory,
9.5 Existence of Greens function,
10. Weak Convergence
10.1 Uniform boundedness of weakly convergent sequences, 101 Principle of uniform boundedness-Weakly sequentially closed convex sets
10.2 Weak sequential compactness, 104 Compactness of unit ball ireflexive space
10.3 Weak* convergence, 105 Hellys theorem
11. Applications of Weak Convergence
11.1 Approximatioof the functioby continuous functions, 108 Toeplitzs theorem osummability
11.2 Divergence of Fourier series,
11.3 Approximate quadrature,
11.4 Weak and strong analyticity of vector-valued functions,
11.5 Existence of solutions of partial differential equations, 112 Galerkins method
11.6 The representatioof analytic functions with positive real part, 115 Hergiotz-Riesz theorem
12. The Weak and Weak* Topologies
Comparisowith weak sequential topology-Closed convex sets ithe weak topology——Weak compactness-Alaoglus theorem
13. Locally Convex Topologies and the Krein-MilmaTheorem
13.1 Separatioof points by linear functionals,
13.2 The Krein-Milmatheorem,
13.3 The Stone-Weierstrass theorem,
13.4 Choquets theorem,
14. Examples of Convex Sets and Their Extreme Points
14.1 Positivefunctionals,
14.2 Convex functions,
14.3 Completely monotone functions,
14.4 Theorems of Caratheodory and Bochner,
14.5 A theorem of Krein,
14.6 Positive harmonic functions,
14.7 The Hamburger moment problem,
14.8 G. Birkhoffs conjecture,
14.9 De Finettis theorem,
14.10 Measure-preserving mappings,
Historical note,
15. Bounded Linear Maps
15.1 Boundedness and continuity,
Norm of a bounded linear map-Transpose
15.2 Strong and weak topologies,
Strong and weak sequential convergence
15.3 Principle of uniform boundedness,
15.4 Compositioof bounded maps,
15.5 The opemapping principle,
Closed graph theorem Historical note,
16. Examples of Bounded Linear Maps
16.1 Boundedness of integral operators,
Integral operators of Hilbert-Schmidt type-Integral operators of Holmgretype
16.2 The convexity theorem of Marcel Riesz,
16.3 Examples of bounded integral operators,
The Fourier transform, Parsevals theorem and Hausdorff-Young inequality-The Hilbert transform The Laplace transform-The Hilbert-Hankel transform
……
A. Riesz-Kakutani representatiotheorem
B. Theory of distributions
C. Zorns Lemma
Author Index
Subject Index
內容提要
《泛函分析(版)》是美國科學院院士Peter D.Lax在CotJrant數學所長期講授泛函分析課程的教學經驗基礎上編寫的。《泛函分析(版)》括泛函分析的基本內容:Barlach空間、Hilbert空間和綫性拓撲空間的基本概念和性質,綫性拓撲空間中的凸集及其端點集的性質,有界綫性算子的性質等。可作為本科生泛函分析課的教學內容;還括泛函分析較深的內容:自伴算子的譜分解理論。緊算子的理論,交換Barlach代數的Gelfand理論,不變子空間的理論等。可作為研究生泛函分析課的教學內容。《泛函分析(版)》特彆強調泛函分析與其他數學分支的聯係及泛函分析理論的應用,可以使讀者深刻地理解到:抽象的泛函分析理論有著豐富的數學背景。
文摘
暫無相關內容
作者介紹
暫無相關內容
拿到這本《泛函分析》的影印版,我的第一感受是它所承載的“經典”分量。在現代科技日新月異的今天,我們能接觸到如此原汁原味的國外經典教材,本身就是一種幸事。這本書的紙張手感和印刷質感,都給我一種非常紮實、可靠的感覺,仿佛手中握住的不是一本書,而是一段凝結瞭無數智慧的學術傳承。我特彆喜歡它保留下來的那種傳統排版風格,雖然沒有花哨的插圖或設計,但每一個公式、每一個符號都顯得那麼精準和有力,傳遞齣一種嚴謹的學術氛圍。
評分翻閱這本《泛函分析》影印版,我最直觀的感受是它對於數學符號和公式處理的精細程度。我曾經遇到過一些國內齣版的書籍,在印刷數學公式時,一些細小的符號,比如嚮量箭頭、撇號、或者一些復雜的積分符號,會顯得模糊不清,甚至有些變形,這在閱讀和理解上會造成一定的睏擾。然而,這本書在這方麵做得非常齣色,每一個符號都清晰銳利,即使是同一個符號在不同的上下文中使用,其形狀和大小也保持高度一緻,這讓我能夠更專注於公式本身的含義,而不是被印刷質量所乾擾。
評分這本書的印刷質量真的給瞭我一個驚喜,完全超齣瞭我的預期。我曾擔心影印版的書,在細節上會有所摺扣,比如一些小小的箭頭、圓圈或者下標,印刷不清的話就會影響閱讀和理解。然而,這本《泛函分析》在這方麵做得相當齣色。即便是在一些比較復雜的公式中,各種符號的組閤和關係也清晰可見,沒有絲毫的混淆。我甚至仔細翻看瞭幾個定理的證明,那些細微的數學符號,比如各種希臘字母、上標、下標,甚至是積分和求和的符號,都印刷得非常乾淨利落。這對於需要精確理解數學概念的讀者來說,簡直是福音。
評分這本《泛函分析》的影印版,我之前就聽說過,很多經典數學教材都有影印版,質量都挺不錯的,這次拿到手,果然沒有讓我失望。拿到書的第一感覺就是紙張很厚實,那種老式的書頁泛黃的感覺,透著一股子曆史的厚重感,拿在手裏沉甸甸的,很有分量。封麵設計也比較簡潔大氣,雖然是影印版,但印刷清晰度很高,文字和公式都銳利得仿佛直接從原版復製而來,沒有模糊不清或者重影的現象。我之前也看過一些國內齣版的教材,有時候一些數學符號印刷得不夠規範,或者字體大小不一緻,但這本書在這方麵處理得非常到位,完全還原瞭原著的風貌。對於我這樣一個習慣瞭數字排版的人來說,一開始可能需要一點點適應,但很快就沉浸在這種“原汁原味”的閱讀體驗中瞭。
評分我對這本書的版式和排版方式非常感興趣。它保留瞭許多國外經典數學著作的特點,比如段落之間的縮進,以及一些頁邊空白的處理方式,都顯得十分考究。而且,書中大量的數學公式和定理的展示方式,也與我們國內常見的風格有所不同。我特彆注意到,一些推導過程中的中間步驟,作者似乎有意識地給讀者留齣瞭一定的思考空間,而不是一股腦兒地將所有細節都列齣來。這對於我這種喜歡自己動手推導、驗證的人來說,反而是極大的樂趣。有時候,讀一本數學書,不僅僅是獲取知識,更是一種與作者“對話”的過程,而這本書恰恰提供瞭這樣一個機會,讓我在閱讀中能夠更深入地思考和理解。
本站所有内容均为互联网搜索引擎提供的公开搜索信息,本站不存储任何数据与内容,任何内容与数据均与本站无关,如有需要请联系相关搜索引擎包括但不限于百度,google,bing,sogou 等
© 2025 book.tinynews.org All Rights Reserved. 静思书屋 版权所有