基本信息
书名:破解福尔摩斯思维习惯:印度数学
定价:29.90元
作者:于雷
出版社:吉林科学技术出版社有限责任公司
出版日期:2015-07-01
ISBN:9787538485318
字数:
页码:300
版次:1
装帧:平装
开本:16开
商品重量:0.4kg
编辑推荐
※※※改变固有的思维方式
※※※数学不在是头疼的难事
※※※轻松搞定平方、立方
※※※考试不再为算数浪费时间
※※※简单的数学解题方法
内容提要
《印度数学》整理总结了数十种影响了世界几千年的印度秘密计算法,还包括平方、立方、平方根、立方根、方程组以及神秘奇特的手算法和验算法等。这些方法会提高学生加减乘除的运算能力,不仅仅能够提高学生的数学成绩,更能让他们的思维方式得到改变,让他们从一开始就站在一个较高的起点上。对孩子来说,它可以提高对数学的兴趣,爱上数学,爱上动脑;对学生来说,它可以提高计算的速度和准确性,提高学习成绩;对成年人来说,它可以改变我们的思维方式,让你在工作和生活中出类拔萃、与众不同。如今,我们将印度数学的秘密计算法在本书中公开。让我们进入印度数学的奇妙世界,学习魔法般神奇的计算法吧!
目录
章 印度加法计算法…………………………………………………… 009
1. 从左往右计算加法… ………………………………………………… 009
2. 两位数的加法运算… ………………………………………………… 013
3. 三位数的加法运算… ………………………………………………… 016
4. 巧用补数算加法… …………………………………………………… 019
5. 用凑整法算加法… …………………………………………………… 022
6. 四位数的加法运算… ………………………………………………… 025
7. 在格子里算加法… …………………………………………………… 028
8. 计算连续自然数的和… ……………………………………………… 032
第二章 印度减法计算法…………………………………………………… 036
1. 从左往右计算减法… ………………………………………………… 036
2. 两位数的减法运算… ………………………………………………… 039
3. 两位数减一位数的运算… …………………………………………… 042
4. 三位数减两位数的运算… …………………………………………… 045
5. 三位数的减法运算… ………………………………………………… 048
6. 巧用补数算减法… …………………………………………………… 051
7. 用凑整法算减法… …………………………………………………… 054
第三章 印度乘法计算法…………………………………………………… 057
1. 十位数相同、个位相加为10的两位数相乘… ……………………… 057
2. 个位数相同、十位相加为10的两位数相乘… ……………………… 060
3. 十位数相同的两位数相乘… ………………………………………… 063
4. 三位以上的数字与11相乘… ………………………………………… 067
5. 三位以上的数字与111相乘…………………………………………… 072
6. 任意数与9相乘………………………………………………………… 076
7. 任意数与99相乘… …………………………………………………… 079
8. 任意数与999相乘……………………………………………………… 082
9. 11~19之间的整数相乘… …………………………………………… 085
10. 100~110之间的整数相乘…………………………………………… 090
11. 在三角格子里算乘法………………………………………………… 093
12. 在表格里算乘法……………………………………………………… 097
13. 用四边形算两位数的乘法…………………………………………… 101
14. 用交叉计算法算两位数的乘法……………………………………… 104
15. 三位数与两位数相乘………………………………………………… 108
16. 三位数乘以三位数…………………………………………………… 112
17. 四位数与两位数相乘………………………………………………… 116
18. 四位数乘以三位数…………………………………………………… 120
19. 用错位法算乘法……………………………………………………… 125
20. 用节点法算乘法……………………………………………………… 129
21. 用因数分解法算乘法………………………………………………… 133
22. 用模糊中间数算乘法………………………………………………… 137
23. 用较小数的平方算乘法……………………………………………… 140
24. 接近50的数字相乘…………………………………………………… 143
25. 接近100的数字相乘… ……………………………………………… 147
26. 接近200的数字相乘… ……………………………………………… 151
27. 将数字分解成容易计算的数字再进行计算………………………… 155
第四章 印度乘方计算法…………………………………………………… 158
1. 尾数为5的两位数的平方……………………………………………… 158
2. 尾数为6的两位数的平方……………………………………………… 161
3. 尾数为7的两位数的平方……………………………………………… 164
4. 尾数为8的两位数的平方……………………………………………… 167
5. 尾数为9的两位数的平方……………………………………………… 170
6. 11~19平方的计算法… ……………………………………………… 173
7. 21~29平方的计算法… ……………………………………………… 176
8. 31~39平方的计算法… ……………………………………………… 179
9. 任意两位数的平方… ………………………………………………… 183
10. 任意三位数的平方…………………………………………………… 186
11. 用基数法计算三位数的平方………………………………………… 189
12. 以“10”开头的三、四位数平方的算法…………………………… 192
13. 两位数的立方………………………………………………………… 195
14. 用基准数法算两位数的立方………………………………………… 198
第五章 印度除法计算法及其他技巧… ………………………………… 201
1. 一个数除以9的神奇规律……………………………………………… 201
2. 如果除数以5结尾……………………………………………………… 206
3. 完全平方数的平方根… ……………………………………………… 209
4. 完全立方数的立方根… ……………………………………………… 219
5. 二元一次方程的解法… ……………………………………………… 222
6. 将循环小数转换成分数… …………………………………………… 225
7. 印度验算法… ………………………………………………………… 227
8. 一位数与9相乘的手算法……………………………………………… 231
9. 两位数与9相乘的手算法……………………………………………… 234
10. 6~10之间乘法的手算法… ………………………………………… 238
11. 11~15之间乘法的手算法…………………………………………… 241
12. 16~20之间乘法的手算法…………………………………………… 243
13. 神奇的数字规律……………………………………………………… 245
答 案…………………………………………………………………………… 249
作者介绍
于雷,出生于冰城哈尔滨,毕业于北京大学。做事认真严谨,喜欢读书和思考,长期致力于青少年益智和教育领域的研究,逻辑思维训练专家及畅销书作家。有7年图书出版经验。出版有《北大清华学生爱做的400个思维游戏》《逻辑思维训练500题》《青少年逻辑思维训练系列》等一批青年益智读物,深受广大读者欢迎。其中《逻辑思维训练500题》被北京图书大厦评为“2008年读者喜爱的图书(社科类)”,至今销售已逾12万册。
文摘
个位数相同、十位相加为10的两位数相乘
方法
(1)两个乘数的个位上的数字相乘为积的后两位数字(不足用0补)。
(2)两个乘数的十位上的数字相乘后加上个位上的数字为百位和千位数字。
例子
(1)计算93×13=______
3×3=9
9×1+3=12
所以93×13=1209
(2)计算27×87=______
7×7=49
2×8+7=23
所以27×87=2349
(3)计算74×34=______
4×4=16
7×3+4=25
所以74×34=2516
三位以上的数字与11相乘
方法
(1)把和11相乘的乘数写在纸上,中间和前后留出适当的空格。
如abcd×11,则将乘数abcd写成:
a b c d
(2)将乘数中相邻的两位数字依次相加求出的和依次写在乘数下面留出的空位
上。
a b c d
a+b b+c c+d
(3)将乘数的首位数字写在左边,乘数的末尾数字写在右边。
a b c d
a a+b b+c c+d d
(4)第二排的计算结果即为乘数乘以11的结果(注意进位)。
例子一
(1)计算85436×11=______
8 5 4 3 6
8 8+5 5+4 4+3 3+6 6
8 13 9 7 9 6
进位:9 3 9 7 9 6
所以85436×11=939796
(2)计算123456×11=______
1 2 3 4 5 6
1 1+2 2+3 3+4 4+5 5+6 6
1 3 5 7 9 11 6
进位:1 3 5 8 0 1 6
所以123456×11=1358016
三位以上的数字与111相乘
方法
(1)把和111相乘的乘数写在纸上,中间和前后留出适当的空格。
如abc×111,积的位为a,第二位为a+b,第三位为a+b+c,第四位为b
+c,第五位为c。
(2)结果即为被乘数乘以111的结果(注意进位)。
例子
(1)计算543×111=______
积位为5,
第二位为5+4=9,
第三位为5+4+3=12,
第四位为4+3=7,
第五位为3。
即结果为5 9 12 7 3
进位后为60273
所以543×111=60273
如果被乘数为四位数abcd,那么积的位为a,第二位为a+b,第三位为a
+b+c,第四位为b+c+d,第五位为c+d,第六位为d。
(2)计算5123×111=______
积位为5,
第二位为5+1=6,
第三位为5+1+2=8,
第四位为1+2+3=6,
第五位为2+3=5,
第六位为3。
即结果为5 6 8 6 5 3
所以5123×111=568653
接近50的数字相乘
方法
(1)设定50为基准数,计算出两个数与50之间的差。
(2)将被乘数与乘数竖排写在左边,两个差竖排写在右边,中间用斜线隔开。
(3)将上两排数字交叉相加所得的结果写在第三排的左边。
(4)将两个差相乘所得的积写在右边。
(5)将第3步的结果乘以基准数50,与第4步所得结果加起来,即为结果。
例子
(1)计算46×42=______
先计算出46、42与50的差,分别为-4,-8,因此可以写成下列形式:
46/-4
42/-8
交叉相加,46-8或42-4,都等于38。
两个差相乘,(-4)×(-8)=32。
因此可以写成:
46/-4
42/-8
38/32
38×50+32=1932
所以46×42=1932
(2)计算53×42=______
先计算出53、42与50的差,分别为3,-8,因此可以写成下列形式:
53/3
42/-8
交叉相加,53-8或42+3,都等于45。
两个差相乘,3×(-8)=-24。
因此可以写成:
53/3
42/-8
45/-24
45×50-24=2226
所以53×42=2226
(3)计算61×52=______
先计算出61、52与50的差,分别为11,2,因此可以写成下列形式:
61/11
52/2
交叉相加,61+2或52+11,都等于63。
两个差相乘,11×2=22。
因此可以写成:
61/11
52/2
63/22
63×50+22=3172
所以61×52=3172
用因数分解法算乘法
两位数的平方我们已经知道如何计算了,有了这个基础,我们可以运用因数
分解法来使某些符合特定规律的乘法转变成简单的方式进行计算。这个特定的规
律就是:相乘的两个数之间的差必须为偶数。
方法
(1)找出被乘数和乘数的中间数(只有相乘的两个数之差为偶数,它们才有
中间数。)。
(2)确定被乘数和乘数与中间数之间的差。
(3)用因数分解法把乘法转变成平方差的形式进行计算。
例子
(1)计算17×13=______
首先找出它们的中间数为15(求中间数很简单,即将两个数相加除以2即可,
一般心算即可求出)。另外,计算出被乘数和乘数与中间数之间的差为2。
所以17×13=(15+2)×(15-2)
=152-22
=225-4
=221
所以17×13=221
(2)计算158×142=______
首先找出它们的中间数为150。另外,计算出被乘数和乘数与中间数之间的差
为8。
所以158×142=(150+8)×(150-8)
=1502-82
=22500-64
=22436
所以158×142=22436
(3)计算59×87=______
首先找出它们的中间数为73。另外,计算出被乘数和乘数与中间数之间的
差为14。
所以59×87=(73-14)×(73+14)
=732-142
=5329-196
=5133
所以59×87=5133
注意
被乘数与乘数相差越小,计算越简单。
用模糊中间数算乘法
有的时候,中间数的选择并不要取标准的中间数(即两个数的平均
数),我们还可以为了方便计算,取凑整或者平方容易计算的数作为中间数。
方法
(1)找出被乘数和乘数的模糊中间数a(即与相乘的两个数的中间数接近
并且有利于计算的整数。)。
(2)分别确定被乘数和乘数与中间数之间的差b和c。
(3)用公式(a+b)×(a+c)=a2+a×(b+c)+b×c进行计算。
例子
(1)计算47×38=______
首先找出它们的模糊中间数为40(与中间数相近,并容易计算的整数)。
另外,分别计算出被乘数和乘数与中间数之间的差为7和-2。
所以47×38=(40+7)×(40-2)
=402+40×(7-2)-7×2
=1600+200-14
=1786
所以47×38=1786
(2)计算72×48=______
首先找出它们的模糊中间数为50。另外,分别计算出被乘数和乘数与中间数
之间的差为22和-2。
所以72×48=(50+22)×(50-2)
=502+50×(22-2)-22×2
=2500+1000-44
=3456
所以72×48=3456
(3)计算112×98=______
首先找出它们的模糊中间数为100。另外,分别计算出被乘数和乘数与中间数
之间的差为12和-2。
所以112×98=(100+12)×(100-2)
=1002+100×(12-2)-12×2
=10000+1000-24
=10976
所以112×98=10976
序言
章 印度加法计算法…………………………………………………… 009
1. 从左往右计算加法… ………………………………………………… 009
2. 两位数的加法运算… ………………………………………………… 013
3. 三位数的加法运算… ………………………………………………… 016
4. 巧用补数算加法… …………………………………………………… 019
5. 用凑整法算加法… …………………………………………………… 022
6. 四位数的加法运算… ………………………………………………… 025
7. 在格子里算加法… …………………………………………………… 028
8. 计算连续自然数的和… ……………………………………………… 032
第二章 印度减法计算法…………………………………………………… 036
1. 从左往右计算减法… ………………………………………………… 036
2. 两位数的减法运算… ………………………………………………… 039
3. 两位数减一位数的运算… …………………………………………… 042
4. 三位数减两位数的运算… …………………………………………… 045
5. 三位数的减法运算… ………………………………………………… 048
6. 巧用补数算减法… …………………………………………………… 051
7. 用凑整法算减法… …………………………………………………… 054
第三章 印度乘法计算法…………………………………………………… 057
1. 十位数相同、个位相加为10的两位数相乘… ……………………… 057
2. 个位数相同、十位相加为10的两位数相乘… ……………………… 060
3. 十位数相同的两位数相乘… ………………………………………… 063
4. 三位以上的数字与11相乘… ………………………………………… 067
5. 三位以上的数字与111相乘…………………………………………… 072
6. 任意数与9相乘………………………………………………………… 076
7. 任意数与99相乘… …………………………………………………… 079
8. 任意数与999相乘……………………………………………………… 082
9. 11~19之间的整数相乘… …………………………………………… 085
10. 100~110之间的整数相乘…………………………………………… 090
11. 在三角格子里算乘法………………………………………………… 093
12. 在表格里算乘法……………………………………………………… 097
13. 用四边形算两位数的乘法…………………………………………… 101
14. 用交叉计算法算两位数的乘法……………………………………… 104
15. 三位数与两位数相乘………………………………………………… 108
16. 三位数乘以三位数…………………………………………………… 112
17. 四位数与两位数相乘………………………………………………… 116
18. 四位数乘以三位数…………………………………………………… 120
19. 用错位法算乘法……………………………………………………… 125
20. 用节点法算乘法……………………………………………………… 129
21. 用因数分解法算乘法………………………………………………… 133
22. 用模糊中间数算乘法………………………………………………… 137
23. 用较小数的平方算乘法……………………………………………… 140
24. 接近50的数字相乘…………………………………………………… 143
25. 接近100的数字相乘… ……………………………………………… 147
26. 接近200的数字相乘… ……………………………………………… 151
27. 将数字分解成容易计算的数字再进行计算………………………… 155
第四章 印度乘方计算法…………………………………………………… 158
1. 尾数为5的两位数的平方……………………………………………… 158
2. 尾数为6的两位数的平方……………………………………………… 161
3. 尾数为7的两位数的平方……………………………………………… 164
4. 尾数为8的两位数的平方……………………………………………… 167
5. 尾数为9的两位数的平方……………………………………………… 170
6. 11~19平方的计算法… ……………………………………………… 173
7. 21~29平方的计算法… ……………………………………………… 176
8. 31~39平方的计算法… ……………………………………………… 179
9. 任意两位数的平方… ………………………………………………… 183
10. 任意三位数的平方…………………………………………………… 186
11. 用基数法计算三位数的平方………………………………………… 189
12. 以“10”开头的三、四位数平方的算法…………………………… 192
13. 两位数的立方………………………………………………………… 195
14. 用基准数法算两位数的立方………………………………………… 198
第五章 印度除法计算法及其他技巧… ………………………………… 201
1. 一个数除以9的神奇规律……………………………………………… 201
2. 如果除数以5结尾……………………………………………………… 206
3. 完全平方数的平方根… ……………………………………………… 209
4. 完全立方数的立方根… ……………………………………………… 219
5. 二元一次方程的解法… ……………………………………………… 222
6. 将循环小数转换成分数… …………………………………………… 225
7. 印度验算法… ………………………………………………………… 227
8. 一位数与9相乘的手算法……………………………………………… 231
9. 两位数与9相乘的手算法……………………………………………… 234
10. 6~10之间乘法的手算法… ………………………………………… 238
11. 11~15之间乘法的手算法…………………………………………… 241
12. 16~20之间乘法的手算法…………………………………………… 243
13. 神奇的数字规律……………………………………………………… 245
答 案…………………………………………………………………………… 249
这本书的标题《破解福尔摩斯思维习惯:印度数学》就像一颗投入平静湖面的石子,在我心中激起了层层涟漪。我一直对福尔摩斯的推理能力有着近乎崇拜的感情,总觉得他总能在常人看不见的地方发现端倪,而我又对印度数学那种独特而强大的思维方式充满好奇。这两者的结合,实在是一个令人拍案叫绝的创意。我想象着,这本书会不会像一位经验丰富的向导,带领我们走进福尔摩斯的“思维迷宫”,而印度数学则成了我们手中唯一的“密钥”。我尤其感兴趣的是,书中会如何解析福尔摩斯在分析犯罪动机、评估证人证词时的数学模型。例如,他是否会运用一些简单的概率论来判断某个事件发生的可能性?或者,他是否会利用组合学的原理来推测出可能的犯罪路径?我设想,通过学习书中介绍的印度数学技巧,我们或许能够掌握一些快速估算、逻辑链条构建、以及模式识别的方法,从而在日常生活中,像福尔摩斯一样,拥有更强的分析能力和判断力。这不仅仅是一本关于侦探小说解读的书,更是一次关于如何用数学的智慧武装我们头脑的实用指南,我迫不及待地想要一探究竟。
评分拿到《破解福尔摩斯思维习惯:印度数学》这本书,我的第一反应是:“这名字也太有意思了吧!”我对福尔摩斯的逻辑思维和敏锐观察力一直佩服得五体投地,总想从中学习点什么,但总觉得隔靴搔痒,找不到具体的切入点。而“印度数学”这个词,在我脑海里勾勒出的形象是精巧、高效,甚至带点神秘色彩。我非常好奇,作者是如何把这两者结合起来的?这本书会不会就像一个宝藏地图,指引我们如何从印度数学中挖掘出破解福尔摩斯思维习惯的秘诀?我特别想知道,那些看似艰深复杂的数学概念,比如排列组合、概率统计,甚至是印度数学里一些独特的数术,在福尔摩斯看来,究竟是怎样的工具?他是否会用数学的方式来量化证据的可信度?又或者,他是否能通过数学上的抽象思维,迅速地构建出案件的可能模型?我脑海里已经开始浮现出这样的画面:福尔摩斯在一个案件现场,不是漫无目的地搜寻,而是像一位数学家一样,利用自己对数字和逻辑的深刻理解,有条不紊地分析每一个细节,找出其中的不一致之处。这本书带给我的,不仅仅是知识的增长,更是一种对未知领域探索的兴奋感,我期待它能为我的思维方式带来一次彻底的革新。
评分我一直以来都对那些能改变我认知方式的书籍充满好奇,而《破解福尔摩斯思维习惯:印度数学》正是这样一本让我充满期待的作品。作为一名对逻辑和推理略有研究的读者,我对福尔摩斯的思维模式一直充满敬畏,但总觉得其中缺乏一些可供借鉴的具体方法。这本书的出现,似乎提供了一个全新的视角:将印度数学的精妙之处与福尔摩斯侦探的卓越思维相结合。我猜想,作者或许会从印度数学中那些看似简单却威力无穷的速算技巧入手,展示如何通过快速、准确的计算来减少误差,从而在信息不全的情况下做出更可靠的判断。又或许,它会深入探讨印度数学中蕴含的模式识别能力,比如数列的规律、数字的对应关系,这些是否能够帮助我们在错综复杂的案件中,迅速找到隐藏的联系和线索?我更是设想,书中是否会涉及一些关于组合数学或者图论的入门概念,这些数学分支恰恰是分析复杂系统和相互关联性的利器,而这与福尔摩斯分析人际关系、事件因果链条的过程不谋而合。我渴望了解,这些印度数学的独特智慧,究竟是如何被福尔摩斯“内化”并付诸实践的,从而让他能够拥有那种“非凡”的观察力和推理能力。这本书不仅仅是关于破案,更是一次对人类思维潜能的深度挖掘。
评分这本书简直是一场思维的盛宴!我一直对侦探小说情有独钟,尤其是那位传奇的夏洛克·福尔摩斯,他那严谨、逻辑缜密的推理过程总是让我着迷。这本书的标题《破解福尔摩斯思维习惯:印度数学》立刻抓住了我的眼球,我一直以为数学只是枯燥的数字和公式,没想到它竟然能与福尔摩斯那般敏锐的洞察力联系起来。我迫不及待地想知道,那些看似复杂的数学原理是如何潜移默化地影响了福尔摩斯解决案件的思维模式。书中是否会拆解福尔摩斯在观察、演绎、归纳过程中的数学逻辑?例如,他如何利用概率来评估线索的可信度?又或者,他在几何学上的直觉如何帮助他理解案发现场的空间布局?我尤其期待能够学习到一些实用的方法,将数学思维应用到日常生活中,让我的观察能力和解决问题的能力都得到提升。我想象着,通过阅读这本书,我能够像福尔摩斯一样,在纷繁复杂的表象下,捕捉到那些被忽视的关键细节,从而拨开迷雾,直达真相。我非常好奇作者会如何将印度数学的独特之处,比如速算、数独的原理,甚至是某些古老的计数方法,巧妙地融入到福尔摩斯式的思维训练中。这不仅仅是关于侦探,更是一次关于如何更聪明地思考的探索。
评分看到《破解福尔摩斯思维习惯:印度数学》这个书名,我立刻就被吸引住了。我本身就是夏洛克·福尔摩斯的忠实粉丝,他的思维方式对我来说一直是一个谜。而“印度数学”这个词,又给我一种古老而又充满智慧的感觉。我非常好奇,作者是如何将这两者完美地融合在一起的?这本书是否会揭示福尔摩斯在观察和推理时,是否运用了某些源自印度数学的独特逻辑和计算方法?我设想,也许书中会介绍一些印度数学中的速算技巧,是如何帮助福尔摩斯在瞬息万变的案发现场,快速地进行数据分析和比对的。又或者,它会深入探讨印度数学中关于模式识别和归纳推理的原理,是如何让福尔摩斯能够从零散的线索中,勾勒出完整的犯罪画像。我尤其期待,这本书能提供一些具体的练习方法,让我们能够模仿福尔摩斯的思维模式,并融入印度数学的精髓,从而提升我们自己的逻辑思考能力和问题解决能力。这不仅仅是一次对侦探思维的解析,更是一次关于如何用数学的智慧,去解锁我们自身潜能的探索之旅,我对此充满了极大的期待。
本站所有内容均为互联网搜索引擎提供的公开搜索信息,本站不存储任何数据与内容,任何内容与数据均与本站无关,如有需要请联系相关搜索引擎包括但不限于百度,google,bing,sogou 等
© 2025 book.idnshop.cc All Rights Reserved. 静思书屋 版权所有