編輯推薦
《黎曼幾何》非常值得一讀。
內容簡介
The object of this book is to familiarize the reader with the basic language of and some fundamental theorems in Riemannian Geometry. To avoid referring to previous knowledge of differentiable manifolds, we include Chapter 0, which contains those concepts and results on differentiable manifolds which are used in an essential way in the rest of the book。
The first four chapters of the book present the basic concepts of Riemannian Geometry (Riemannian metrics, Riemannian connections, geodesics and curvature). A good part of the study of Riemannian Geometry consists of understanding the relationship between geodesics and curvature. Jacobi fields, an essential tool for this understanding, are introduced in Chapter 5. In Chapter 6 we introduce the second fundamental form associated with an isometric immersion, and prove a generalization of the Theorem Egregium of Gauss. This allows us to relate the notion of curvature in Riemannian manifolds to the classical concept of Gaussian curvature for surfaces。
內頁插圖
目錄
Preface to the first edition
Preface to the second edition
Preface to the English edition
How to use this book
CHAPTER 0-DIFFERENTIABLE MANIFOLDS
1. Introduction
2. Differentiable manifolds;tangent space
3. Immersions and embeddings;examples
4. Other examples of manifolds,Orientation
5. Vector fields; brackets,Topology of manifolds
CHAPTER 1-RIEMANNIAN METRICS
1. Introduction
2. Riemannian Metrics
CHAPTER 2-AFFINE CONNECTIONS;RIEMANNIAN CONNECTIONS
1. Introduction
2. Affine connections
3. Riemannian connections
CHAPTER 3-GEODESICS;CONVEX NEIGHBORHOODS
1.Introduction
2.The geodesic flow
3.Minimizing properties ofgeodesics
4.Convex neighborhoods
CHAPTER 4-CURVATURE
1.Introduction
2.Curvature
3.Sectional curvature
4.Ricci curvature and 8calar curvature
5.Tensors 0n Riemannian manifoids
CHAPTER 5-JACOBI FIELDS
1.Introduction
2.The Jacobi equation
3.Conjugate points
CHAPTER 6-ISOMETRIC IMMERSl0NS
1.Introduction.
2.The second fundamental form
3.The fundarnental equations
CHAPTER 7-COMPLETE MANIFoLDS;HOPF-RINOW AND HADAMARD THEOREMS
1.Introduction.
2.Complete manifolds;Hopf-Rinow Theorem.
3.The Theorem of Hadamazd.
CHAPTER 8-SPACES 0F CONSTANT CURVATURE
1.Introduction
2.Theorem of Cartan on the determination ofthe metric by mebns of the curvature.
3.Hyperbolic space
4.Space forms
5.Isometries ofthe hyperbolic space;Theorem ofLiouville
CHAPTER 9一VARIATl0NS 0F ENERGY
1.Introduction.
2.Formulas for the first and second variations of enezgy
3.The theorems of Bonnet—Myers and of Synge-WeipJtein
CHAPTER 10-THE RAUCH COMPARISON THEOREM
1.Introduction
2.Ttle Theorem of Rauch.
3.Applications of the Index Lemma to immersions
4.Focal points and an extension of Rauch’s Theorem
CHAPTER 11—THE MORSE lNDEX THEOREM
1.Introduction
2.The Index Theorem
CHAPTER 12-THE FUNDAMENTAL GROUP OF MANIFOLDS 0F NEGATIVE CURVATURE
1.Introduction
2.Existence of closed geodesics
CHAPTER 13-THE SPHERE THEOREM
References
Index
前言/序言
黎曼幾何 [Riemannian Geometry] epub pdf mobi txt 電子書 下載 2024
黎曼幾何 [Riemannian Geometry] 下載 epub mobi pdf txt 電子書
評分
☆☆☆☆☆
讀這本書時,偶然還想到瞭我們日常對狂狷的理解大都錯瞭。《論語·子路》中雲:“不得中行而與之,必也狂狷乎。狂者進取,狷者有所不為也。”狂狷一詞可以分開解,“狂”是對自己來說,“狷”是麵對這個世界來說——自我進取,追求超越,是為狂;沉默以對,不敏俗事,是為狷。反觀那些文青藝青,其狂不過作態,其狷更不必說。惟有一個人道德無虧,纔有資格評價那些道德有虧的。——“你們中間誰是沒有罪的,誰就可以先拿石頭打她。”(《約翰福音》)
評分
☆☆☆☆☆
好好好,不錯。
評分
☆☆☆☆☆
評分
☆☆☆☆☆
貴一點兒,不過值得仔細讀。且是活動期間拿下的,心理平衡瞭。
評分
☆☆☆☆☆
速度很快,但書皮有磨損
評分
☆☆☆☆☆
有點瑕疵,書皮缺瞭一塊,見圖片,換貨太麻煩瞭,就不換瞭
評分
☆☆☆☆☆
隨後,由於黎曼幾何的發展和愛因斯坦廣義相對論的建立,微分幾何在黎曼幾何學和廣義相對論中的得到瞭廣泛的應用,逐漸在數學中成為獨具特色、應用廣泛的獨立學科。
評分
☆☆☆☆☆
據說是黎曼幾何入門的好書?學廣相之前翻一翻
評分
☆☆☆☆☆
微分幾何研究微分流形的幾何性質,是現代數學中一主流;是廣義相對論的基礎,與拓撲學、代數幾何及理論物理關係密切。