微分幾何基礎(英文版) [Fundamentals of Differential Geometry] epub pdf  mobi txt 電子書 下載

微分幾何基礎(英文版) [Fundamentals of Differential Geometry] epub pdf mobi txt 電子書 下載 2025

微分幾何基礎(英文版) [Fundamentals of Differential Geometry] epub pdf mobi txt 電子書 下載 2025


簡體網頁||繁體網頁
[美] 朗 著

下載链接在页面底部


點擊這裡下載
    


想要找書就要到 靜思書屋
立刻按 ctrl+D收藏本頁
你會得到大驚喜!!

發表於2025-01-18

商品介绍



齣版社: 世界圖書齣版公司
ISBN:9787510005404
版次:1
商品編碼:10104514
包裝:平裝
外文名稱:Fundamentals of Differential Geometry
開本:16開
齣版時間:2010-01-01
用紙:膠版紙
頁數:535
正文語種:英語

微分幾何基礎(英文版) [Fundamentals of Differential Geometry] epub pdf mobi txt 電子書 下載 2025



类似图書 點擊查看全場最低價

相关書籍





書籍描述

內容簡介

《微分幾何基礎(英文版)》介紹瞭微分拓撲、微分幾何以及微分方程的基本概念。《微分幾何基礎(英文版)》的基本思想源於作者早期的《微分和黎曼流形》,但重點卻從流形的一般理論轉移到微分幾何,增加瞭不少新的章節。這些新的知識為Banach和Hilbert空間上的無限維流形做準備,但一點都不覺得多餘,而優美的證明也讓讀者受益不淺。在有限維的例子中,討論瞭高維微分形式,繼而介紹瞭Stokes定理和一些在微分和黎曼情形下的應用。給齣瞭Laplacian基本公式,展示瞭其在浸入和浸沒中的特徵。書中講述瞭該領域的一些主要基本理論,如:微分方程的存在定理、少數性、光滑定理和嚮量域流,包括子流形管狀鄰域的存在性的嚮量叢基本理論,微積分形式,包括經典2-形式的辛流形基本觀點,黎曼和僞黎曼流形協變導數以及其在指數映射中的應用,Cartan-Hadamard定理和變分微積分一基本定理。目次:(一部分)一般微分方程;微積分;流形;嚮量叢;嚮量域和微分方程;嚮量域和微分形式運算;Frobenius定理;(第二部分)矩陣、協變導數和黎曼幾何:矩陣;協變導數和測地綫;麯率;二重切綫叢的張量分裂;麯率和變分公式;半負麯率例子;自同構和對稱;浸入和浸沒;(第三部分)體積形式和積分:體積形式;微分形式的積分;Stokes定理;Stokes定理的應用;譜理論。

內頁插圖

目錄

Foreword
Acknowledgments
PART Ⅰ
General Differential Theory,
CHAPTER Ⅰ
Oifferenlial Calculus
Categories
Topological Vector Spaces
Derivatives and Composition of Maps
Integration and Taylors Formula
The Inverse Mapping Theorem

CHAPTER Ⅱ
Manifolds
Atlases, Charts, Morphisms
Submanifolds, Immersions, Submersions
Partitions of Unity
Manifolds with Boundary

CHAPTER Ⅲ
Vector Bundles
Definition, Pull Backs
The Tangent Bundle
Exact Sequences of Bundles
Operations on Vector Bundles
Splitting of Vector Bundles

CHAPTER Ⅳ
Vector Fields and Differential Equations
Existence Theorem for Differential Equations .
Vector Fields, Curves, and Flows
Sprays
The Flow of a Spray and the Exponential Map
Existence of Tubular Neighborhoods
Uniqueness of Tubular Neighborhoods

CHAPTER Ⅴ
Operations on Vector Fields and Differential Forms
Vector Fields, Differential Operators, Brackets
Lie Derivative
Exterior Derivative
The Poincar Lemma
Contractions and Lie Derivative
Vector Fields and l-Forms Under Self Duality
The Canonical 2-Form
Darbouxs Theorem

CHAPTER Ⅵ
The Theorem of Frobenius
Statement of the Theorem
Differential Equations Depending on a Parameter
Proof of the Theorem
The Global Formulation
Lie Groups and Subgroups

PART Ⅱ
Metrics, Covariant Derivatives, and Riemannian Geometry

CHAPTER Ⅶ
Metrics
Definition and Functoriality
The Hilbert Group
Reduction to the Hilbert Group
Hilbertian Tubular Neighborhoods
The Morse-Palais Lemma
The Riemannian Distance
The Canonical Spray

CHAPTER Ⅷ
Covariant Derivatives and Geodesics.
Basic Properties
Sprays and Covariant Derivatives
Derivative Along a Curve and Parallelism
The Metric Derivative
More Local Results on the Exponential Map
Riemannian Geodesic Length and Completeness

CHAPTER Ⅸ
Curvature
The Riemann Tensor
Jacobi Lifts
Application of Jacobi Lifts to Texpx
Convexity Theorems
Taylor Expansions

CHAPTER Ⅹ
Jacobi Lifts and Tensorial Splitting of the Double Tangent Bundle
Convexity of Jacobi Lifts
Global Tubular Neighborhood of a Totally Geodesic Submanifold.
More Convexity and Comparison Results
Splitting of the Double Tangent Bundle
Tensorial Derivative of a Curve in TX and of the Exponential Map
The Flow and the Tensorial Derivative

CHAPTER XI
Curvature and the Variation Formula
The Index Form, Variations, and the Second Variation Formula
Growth of a Jacobi Lift
The Semi Parallelogram Law and Negative Curvature
Totally Geodesic Submanifolds
Rauch Comparison Theorem
CHAPTER XII
An Example of Seminegative Curvature
Pos,,(R) as a Riemannian Manifold
The Metric Increasing Property of the Exponential Map
Totally Geodesic and Symmetric Submanifolds

CHAPTER XIII
Automorphisms and Symmetries.,
The Tensorial Second Derivative
Alternative Definitions of Killing Fields
Metric Killing Fields
Lie Algebra Properties of Killing Fields
Symmetric Spaces
Parallelism and the Riemann Tensor
CHAPTER XlV
Immersions and Submersions .
The Covariant Derivative on a Submanifoid
The Hessian and Laplacian on a Submanifold
The Covariant Derivative on a Riemhnnian Submersion .
The Hessian and Laplacian on a Riemannian Submersion
The Riemann Tensor on Submanifolds
The Riemann Tensor on a Riemannian Submersion

PART III
Volume Forms and Integration
CHAPTER XV
Volume Forms
Volume Forms and the Divergence
Covariant Derivatives
The Jacobian Determinant of the Exponential Map
The Hodge Star on Forms
Hodge Decomposition of Differential Forms
Volume Forms in a Submersion
Volume Forms on Lie Groups and Homogeneous Spaces
Homogeneously Fibered Submersions

CHAPTER XVI
Integration of Differential Forms
Sets of Measure 0
Change of Variables Formula
Orientation
The Measure Associated with a Differential Form
Homogeneous Spaces

CHAPTER XVII
Stokes Theorem
Stokes Theorem for a Rectangular Simplex
Stokes Theorem on a Manifold
Stokes Theorem with Singularities

CHAPTER XVIII
Applications of Stokes Theorem
The Maximal de Rham Cohomology
Mosers Theorem
The Divergence Theorem
The Adjoint of d for Higher Degree Forms
Cauchys Theorem
The Residue Theorem

APPENDIX
The Spectral Theorem,
Hilbert Space
Functionals and Operators
Hermitian Operators
Bibliography
Index

精彩書摘

We shall recall briefly the notion of derivative and some of its usefulproperties. As mentioned in the foreword, Chapter VIII of Dieudonn6sbook or my books on analysis [La 83], [La 93] give a self-contained andcomplete treatment for Banach spaces. We summarize certain factsconcerning their properties as topological vector spaces, and then wesummarize differential calculus. The reader can actually skip this chapterand start immediately with Chapter II if the reader is accustomed tothinking about the derivative of a map as a linear transformation. (In thefinite dimensional case, when bases have been selected, the entries in thematrix of this transformation are the partial derivatives of the map.) Wehave repeated the proofs for the more important theorems, for the ease ofthe reader.
It is convenient to use throughout the language of categories. Thenotion of category and morphism (whose definitions we recall in 1) isdesigned to abstract what is common to certain collections of objects andmaps between them. For instance, topological vector spaces and continuous linear maps, open subsets of Banach spaces and differentiablemaps, differentiable manifolds and differentiable maps, vector bundles andvector bundle maps, topological spaces and continuous maps, sets and justplain maps. In an arbitrary category, maps are called morphisms, and infact the category of differentiable manifolds is of such importance in thisbook that from Chapter II on, we use the word morphism synonymouslywith differentiable map (or p-times differentiable map, to be precise). Allother morphisms in other categories will be qualified by a prefix to in-dicate the category to which they belong.

前言/序言

  The present book aims to give a fairly comprehensive account of thefundamentals of differential manifolds and differential geometry. The sizeof the book influenced where to stop, and there would be enough materialfor a second volume (this is not a threat).
  At the most basic level, the book gives an introduction to the basicconcepts which are used in differential topology, differential geometry, anddifferential equations. In differential topology, one studies for instancehomotopy classes of maps and the possibility of finding suitable differen-tiable maps in them (immersions, embeddings, isomorphisms, etc.). Onemay also use differentiable structures on topological manifolds to deter-mine the topological structure of the manifold (for example, h ia Smale[Sin 67]). In differential geometry, one puts an additional structure on thedifferentiable manifold (a vector field, a spray, a 2-form, a Riemannianmetric, ad lib.) and studies properties connected especially with theseobjects. Formally, one may say that one studies properties invariant underthe group of differentiable automorphisms which preserve the additionalstructure. In differential equations, one studies vector fields and their in-tegral curves, singular points, stable and unstable manifolds, etc. A certainnumber of concepts are essential for all three, and are so basic and elementarythat it is worthwhile to collect them together so that more advanced expositionscan be given without having to start from the very beginnings.
  Those interested in a brief introduction could run through Chapters II,III, IV, V, VII, and most of Part III on volume forms, Stokes theorem,and integration. They may also assume all manifolds finite dimensional.

微分幾何基礎(英文版) [Fundamentals of Differential Geometry] epub pdf mobi txt 電子書 下載 2025

微分幾何基礎(英文版) [Fundamentals of Differential Geometry] 下載 epub mobi pdf txt 電子書

微分幾何基礎(英文版) [Fundamentals of Differential Geometry] pdf 下載 mobi 下載 pub 下載 txt 電子書 下載 2025

微分幾何基礎(英文版) [Fundamentals of Differential Geometry] mobi pdf epub txt 電子書 下載 2025

微分幾何基礎(英文版) [Fundamentals of Differential Geometry] epub pdf mobi txt 電子書 下載
想要找書就要到 靜思書屋
立刻按 ctrl+D收藏本頁
你會得到大驚喜!!

讀者評價

評分

一本較老的講訴微分幾何的教材,牛人之作必屬精品。

評分

整體微分幾何

評分

估計一般讀梁老師書的同學都是梁老師的學生,所以嘛,動筆評論先輩隻有我這種不太招老師喜歡的×××纔乾的齣來(還寫的津津有味)。嗬嗬,這書的第一版上下冊我都仔細讀過(實際上是我們的課本,習題都做過)。做理論不懂現代幾何是不行的,就像不懂微積分就連普物也不可能學懂一樣。但是這套書的幾何並不夠用(對廣義相對論也不是全部夠用),當然這書寫的本來就是“微分幾何入門”。但是這本書並不太適閤做微分幾何入門的教材,有點概念和定理羅列的感覺,當然材料挺詳細,分析也極為嚴謹。我想從北師大和理論所(我這是點名瞭,估計肯定要挨磚瞭)學生的感覺可以看齣這一點。問起某些重要的幾何性質,大傢一般的反映是:嗯,這個梁老師書上有。好點的能給你背齣是第幾章第幾節。嗬嗬,這種效果不用我說瞭吧(當然也是我們太笨)。

評分

評分

書的微分幾何的學習很有幫助。本書介紹麯綫和麯麵幾何的入門知識,主要內容包括歐氏空間上的積分、幀場、歐氏幾何、麯麵積分、形狀算子、麯麵幾何、黎曼幾何、麯麵上的球麵結構等。修訂版擴展瞭一些主題,更加強調拓撲性質、測地綫的性質、嚮量場的奇異性等。更為重要的是,修訂版增加瞭計算機建模的內容,提供瞭Mathematica和Maple程序。此外,還增加瞭相應的計算機習題,補充瞭奇數號碼習題的答案,更便於教學。《微分幾何基礎(英文版·第2版修訂版)》適閤作為高等院校本科生相關課程的教材,也適閤作為相關專業研究生和科研人員的參考書。也不失為學習英語的好方法。書的編排很好,正版

評分

很經典的微分幾何書,比陳老那本更易懂,書還是很不錯的,影印版的質量很好

評分

雖然說是基礎不過有點難度

評分

好書,希望能好好看看。

評分

好書,希望能好好看看。

微分幾何基礎(英文版) [Fundamentals of Differential Geometry] epub pdf mobi txt 電子書 下載 2025

类似图書 點擊查看全場最低價

微分幾何基礎(英文版) [Fundamentals of Differential Geometry] epub pdf mobi txt 電子書 下載 2025


分享鏈接





相关書籍


本站所有內容均為互聯網搜索引擎提供的公開搜索信息,本站不存儲任何數據與內容,任何內容與數據均與本站無關,如有需要請聯繫相關搜索引擎包括但不限於百度google,bing,sogou

友情鏈接

© 2025 book.idnshop.cc All Rights Reserved. 靜思書屋 版权所有