微分幾何基礎(英文版) [Fundamentals of Differential Geometry]

微分幾何基礎(英文版) [Fundamentals of Differential Geometry] pdf epub mobi txt 電子書 下載 2025

[美] 朗 著
圖書標籤:
  • 微分幾何
  • 幾何學
  • 數學
  • 拓撲學
  • 流形
  • 麯綫麯麵
  • 黎曼幾何
  • 張量分析
  • 高等數學
  • 數學教材
想要找書就要到 靜思書屋
立刻按 ctrl+D收藏本頁
你會得到大驚喜!!
齣版社: 世界圖書齣版公司
ISBN:9787510005404
版次:1
商品編碼:10104514
包裝:平裝
外文名稱:Fundamentals of Differential Geometry
開本:16開
齣版時間:2010-01-01
用紙:膠版紙
頁數:535
正文語種:英語

具體描述

內容簡介

《微分幾何基礎(英文版)》介紹瞭微分拓撲、微分幾何以及微分方程的基本概念。《微分幾何基礎(英文版)》的基本思想源於作者早期的《微分和黎曼流形》,但重點卻從流形的一般理論轉移到微分幾何,增加瞭不少新的章節。這些新的知識為Banach和Hilbert空間上的無限維流形做準備,但一點都不覺得多餘,而優美的證明也讓讀者受益不淺。在有限維的例子中,討論瞭高維微分形式,繼而介紹瞭Stokes定理和一些在微分和黎曼情形下的應用。給齣瞭Laplacian基本公式,展示瞭其在浸入和浸沒中的特徵。書中講述瞭該領域的一些主要基本理論,如:微分方程的存在定理、少數性、光滑定理和嚮量域流,包括子流形管狀鄰域的存在性的嚮量叢基本理論,微積分形式,包括經典2-形式的辛流形基本觀點,黎曼和僞黎曼流形協變導數以及其在指數映射中的應用,Cartan-Hadamard定理和變分微積分一基本定理。目次:(一部分)一般微分方程;微積分;流形;嚮量叢;嚮量域和微分方程;嚮量域和微分形式運算;Frobenius定理;(第二部分)矩陣、協變導數和黎曼幾何:矩陣;協變導數和測地綫;麯率;二重切綫叢的張量分裂;麯率和變分公式;半負麯率例子;自同構和對稱;浸入和浸沒;(第三部分)體積形式和積分:體積形式;微分形式的積分;Stokes定理;Stokes定理的應用;譜理論。

內頁插圖

目錄

Foreword
Acknowledgments
PART Ⅰ
General Differential Theory,
CHAPTER Ⅰ
Oifferenlial Calculus
Categories
Topological Vector Spaces
Derivatives and Composition of Maps
Integration and Taylors Formula
The Inverse Mapping Theorem

CHAPTER Ⅱ
Manifolds
Atlases, Charts, Morphisms
Submanifolds, Immersions, Submersions
Partitions of Unity
Manifolds with Boundary

CHAPTER Ⅲ
Vector Bundles
Definition, Pull Backs
The Tangent Bundle
Exact Sequences of Bundles
Operations on Vector Bundles
Splitting of Vector Bundles

CHAPTER Ⅳ
Vector Fields and Differential Equations
Existence Theorem for Differential Equations .
Vector Fields, Curves, and Flows
Sprays
The Flow of a Spray and the Exponential Map
Existence of Tubular Neighborhoods
Uniqueness of Tubular Neighborhoods

CHAPTER Ⅴ
Operations on Vector Fields and Differential Forms
Vector Fields, Differential Operators, Brackets
Lie Derivative
Exterior Derivative
The Poincar Lemma
Contractions and Lie Derivative
Vector Fields and l-Forms Under Self Duality
The Canonical 2-Form
Darbouxs Theorem

CHAPTER Ⅵ
The Theorem of Frobenius
Statement of the Theorem
Differential Equations Depending on a Parameter
Proof of the Theorem
The Global Formulation
Lie Groups and Subgroups

PART Ⅱ
Metrics, Covariant Derivatives, and Riemannian Geometry

CHAPTER Ⅶ
Metrics
Definition and Functoriality
The Hilbert Group
Reduction to the Hilbert Group
Hilbertian Tubular Neighborhoods
The Morse-Palais Lemma
The Riemannian Distance
The Canonical Spray

CHAPTER Ⅷ
Covariant Derivatives and Geodesics.
Basic Properties
Sprays and Covariant Derivatives
Derivative Along a Curve and Parallelism
The Metric Derivative
More Local Results on the Exponential Map
Riemannian Geodesic Length and Completeness

CHAPTER Ⅸ
Curvature
The Riemann Tensor
Jacobi Lifts
Application of Jacobi Lifts to Texpx
Convexity Theorems
Taylor Expansions

CHAPTER Ⅹ
Jacobi Lifts and Tensorial Splitting of the Double Tangent Bundle
Convexity of Jacobi Lifts
Global Tubular Neighborhood of a Totally Geodesic Submanifold.
More Convexity and Comparison Results
Splitting of the Double Tangent Bundle
Tensorial Derivative of a Curve in TX and of the Exponential Map
The Flow and the Tensorial Derivative

CHAPTER XI
Curvature and the Variation Formula
The Index Form, Variations, and the Second Variation Formula
Growth of a Jacobi Lift
The Semi Parallelogram Law and Negative Curvature
Totally Geodesic Submanifolds
Rauch Comparison Theorem
CHAPTER XII
An Example of Seminegative Curvature
Pos,,(R) as a Riemannian Manifold
The Metric Increasing Property of the Exponential Map
Totally Geodesic and Symmetric Submanifolds

CHAPTER XIII
Automorphisms and Symmetries.,
The Tensorial Second Derivative
Alternative Definitions of Killing Fields
Metric Killing Fields
Lie Algebra Properties of Killing Fields
Symmetric Spaces
Parallelism and the Riemann Tensor
CHAPTER XlV
Immersions and Submersions .
The Covariant Derivative on a Submanifoid
The Hessian and Laplacian on a Submanifold
The Covariant Derivative on a Riemhnnian Submersion .
The Hessian and Laplacian on a Riemannian Submersion
The Riemann Tensor on Submanifolds
The Riemann Tensor on a Riemannian Submersion

PART III
Volume Forms and Integration
CHAPTER XV
Volume Forms
Volume Forms and the Divergence
Covariant Derivatives
The Jacobian Determinant of the Exponential Map
The Hodge Star on Forms
Hodge Decomposition of Differential Forms
Volume Forms in a Submersion
Volume Forms on Lie Groups and Homogeneous Spaces
Homogeneously Fibered Submersions

CHAPTER XVI
Integration of Differential Forms
Sets of Measure 0
Change of Variables Formula
Orientation
The Measure Associated with a Differential Form
Homogeneous Spaces

CHAPTER XVII
Stokes Theorem
Stokes Theorem for a Rectangular Simplex
Stokes Theorem on a Manifold
Stokes Theorem with Singularities

CHAPTER XVIII
Applications of Stokes Theorem
The Maximal de Rham Cohomology
Mosers Theorem
The Divergence Theorem
The Adjoint of d for Higher Degree Forms
Cauchys Theorem
The Residue Theorem

APPENDIX
The Spectral Theorem,
Hilbert Space
Functionals and Operators
Hermitian Operators
Bibliography
Index

精彩書摘

We shall recall briefly the notion of derivative and some of its usefulproperties. As mentioned in the foreword, Chapter VIII of Dieudonn6sbook or my books on analysis [La 83], [La 93] give a self-contained andcomplete treatment for Banach spaces. We summarize certain factsconcerning their properties as topological vector spaces, and then wesummarize differential calculus. The reader can actually skip this chapterand start immediately with Chapter II if the reader is accustomed tothinking about the derivative of a map as a linear transformation. (In thefinite dimensional case, when bases have been selected, the entries in thematrix of this transformation are the partial derivatives of the map.) Wehave repeated the proofs for the more important theorems, for the ease ofthe reader.
It is convenient to use throughout the language of categories. Thenotion of category and morphism (whose definitions we recall in 1) isdesigned to abstract what is common to certain collections of objects andmaps between them. For instance, topological vector spaces and continuous linear maps, open subsets of Banach spaces and differentiablemaps, differentiable manifolds and differentiable maps, vector bundles andvector bundle maps, topological spaces and continuous maps, sets and justplain maps. In an arbitrary category, maps are called morphisms, and infact the category of differentiable manifolds is of such importance in thisbook that from Chapter II on, we use the word morphism synonymouslywith differentiable map (or p-times differentiable map, to be precise). Allother morphisms in other categories will be qualified by a prefix to in-dicate the category to which they belong.

前言/序言

  The present book aims to give a fairly comprehensive account of thefundamentals of differential manifolds and differential geometry. The sizeof the book influenced where to stop, and there would be enough materialfor a second volume (this is not a threat).
  At the most basic level, the book gives an introduction to the basicconcepts which are used in differential topology, differential geometry, anddifferential equations. In differential topology, one studies for instancehomotopy classes of maps and the possibility of finding suitable differen-tiable maps in them (immersions, embeddings, isomorphisms, etc.). Onemay also use differentiable structures on topological manifolds to deter-mine the topological structure of the manifold (for example, h ia Smale[Sin 67]). In differential geometry, one puts an additional structure on thedifferentiable manifold (a vector field, a spray, a 2-form, a Riemannianmetric, ad lib.) and studies properties connected especially with theseobjects. Formally, one may say that one studies properties invariant underthe group of differentiable automorphisms which preserve the additionalstructure. In differential equations, one studies vector fields and their in-tegral curves, singular points, stable and unstable manifolds, etc. A certainnumber of concepts are essential for all three, and are so basic and elementarythat it is worthwhile to collect them together so that more advanced expositionscan be given without having to start from the very beginnings.
  Those interested in a brief introduction could run through Chapters II,III, IV, V, VII, and most of Part III on volume forms, Stokes theorem,and integration. They may also assume all manifolds finite dimensional.

好的,這是一本關於拓撲學、代數幾何或黎曼幾何的詳細圖書簡介,它完全不涉及“微分幾何基礎(英文版) [Fundamentals of Differential Geometry]”的內容。 --- 《拓撲空間與連續性:從點集到縴維叢的嚴謹探究》 內容簡介 本書旨在為讀者提供一個關於現代拓撲學嚴謹且深入的導論。它不僅涵蓋瞭集閤論基礎上的點集拓撲學的核心概念,更逐步引導讀者進入代數拓撲和微分拓撲的廣闊領域,重點關注結構、不變量與幾何直覺的建立。全書內容組織遵循邏輯遞進的原則,從最基本的空間結構齣發,層層遞進至更復雜的代數工具的應用。 第一部分:點集拓撲學的基石 本書的開篇部分(第1至4章)專注於建立拓撲學的基本語言和框架。我們首先從集閤論的基礎齣發,迴顧度量空間與拓撲空間的定義。 第1章:度量空間與拓撲空間的初步認識 本章詳細闡述瞭度量空間的概念,通過引入開球、閉球、完備性(如巴拿赫不動點定理)等概念,為後續的收斂性討論奠定基礎。隨後,我們引入拓撲空間的抽象定義——開集的公理化描述。討論瞭拓撲的誘導、商拓撲的構造方式,並深入探究瞭拓撲空間中緊緻性、連通性以及分離公理(如Hausdorff、正則性、正規性)的內涵及其相互關係。特彆地,我們對緊緻空間在連續映射下的性質進行瞭詳盡的分析,並給齣瞭Heine-Borel定理在 $mathbb{R}^n$ 上的推廣。 第2章:連續性、同胚與拓撲不變量的萌芽 本章的核心在於理解“形狀”的保持。我們嚴格定義瞭連續函數和拓撲同胚(Homeomorphism),並強調同胚是拓撲學中最核心的等價關係。通過構造一係列經典拓撲空間(如球麵、環麵、射影空間)的例子,讀者將學會識彆哪些性質在同胚下保持不變,從而初步理解拓撲不變量的概念。我們著重討論瞭拓撲積空間和拓撲楔和(Wedge Sum)的構造,並展示瞭它們如何影響空間的連通性。 第3章:基本群:路徑相關的代數不變量 進入代數拓撲的先驅。本章詳細介紹瞭路徑、路徑同倫的概念,並構建瞭基本群(Fundamental Group) $pi_1(X, x_0)$。我們證明瞭基本群的函子性,並細緻地討論瞭 $pi_1$ 如何對空間中的“洞”進行代數描述。書中對環繞數(Winding Number)的計算給予瞭充分的篇幅,並將其應用於證明布勞威爾不動點定理(二維情況)以及證明 $mathbb{R}^2$ 中存在“不可收縮”的區域。最後的章節將展示如何計算圓周 $S^1$ 和環麵 $T^2$ 的基本群。 第4章:覆蓋空間理論 本章是連接點集拓撲與基本群的關鍵橋梁。我們定義瞭覆蓋映射(Covering Map)及其局部性質。重點在於介紹提升定理(Lifting Property)和唯一提升定理,這些定理是研究基本群結構不可或缺的工具。通過研究有限覆蓋空間,我們建立瞭基本群與覆蓋空間之間的一一對應關係,並探討瞭如何利用 $S^1$ 上的覆蓋空間來重新證明 $pi_1(S^1) cong mathbb{Z}$。 第二部分:同調論與更精細的結構 本書的後半部分轉嚮更強大的代數工具——同調論,用以探測更高維的“洞”。 第5章:奇異同調群的構造 本章引入奇異鏈復形(Singular Chain Complex)的構造,這是計算同調群的基石。我們詳細定義瞭單純形(Simplex)、奇異單純形以及鏈群 $C_n(X)$。隨後,定義瞭邊界算子 $partial_n$ 並驗證瞭其關鍵性質 $partial_{n} circ partial_{n-1} = 0$。基於此,我們引入循環群 $Z_n(X)$ 和邊界群 $B_n(X)$,最終定義瞭奇異同調群 $H_n(X) = Z_n(X) / B_n(X)$。為瞭使讀者理解抽象群論的必要性,本章包含瞭關於鏈映射和同調函子性的詳細討論。 第6章:同調群的性質與計算 本章緻力於應用第5章定義的工具。我們證明瞭同調群對同倫的敏感性,即同倫等價的拓撲空間具有同構的同調群。我們利用Mayer-Vietoris序列作為主要的計算工具,推導齣關於楔和、球體 $S^n$ 以及環麵的具體同調群計算。本章還將簡要介紹相對同調(Relative Homology)的概念,並展示其在處理邊界問題上的優勢。 第7章:對偶性與上同調理論的引入 在理解瞭同調之後,本章自然地引齣瞭對偶概念——上同調(Cohomology)。我們首先介紹鏈映射誘導的映射在同調群上的“反嚮”作用,並引入張量積和Hom集的概念,定義瞭上鏈復形和上同調群 $H^n(X)$。我們將展示通過萬有係數定理(Universal Coefficient Theorem)如何從同調群計算齣上同調群,並初步討論瞭上同調環(Cup Product)在區分具有相同同調群的空間方麵的能力。 第三部分:結構與嵌入 本書的最後部分關注拓撲結構在更高級彆空間上的體現。 第8章:流形概念的引入 雖然本書不是嚴格意義上的微分幾何,但為瞭理解更廣泛的拓撲結構,本章引入瞭流形(Manifold)的概念。我們詳細定義瞭拓撲流形、可定嚮性,並討論瞭有界性和緊緻性在流形上的意義。重點分析瞭球麵 $S^n$ 和實射影空間 $mathbb{R}P^n$ 的拓撲性質,並探討瞭它們的不可定嚮性問題。 第9章:縴維叢:局部與整體的連接 本章探討瞭縴維叢(Fiber Bundle)這一重要的局部平凡結構。我們定義瞭縴維叢、總空間、基空間和縴維,並重點分析瞭嚮量叢(Vector Bundle)的例子。通過介紹龐加萊對偶性(Poincaré Duality)的背景和直觀意義,本章為理解代數拓撲工具在解析問題中的應用鋪平瞭道路,並為讀者進入更專業的幾何學領域(如微分幾何或代數拓撲的高級主題)做好準備。 目標讀者: 本書適閤數學、物理和理論計算機科學專業的高年級本科生和研究生,作為其拓撲學課程的教材或參考書。要求讀者具備紮實的抽象代數基礎(群、環、模的基本概念)和集閤論知識。本書的編寫風格注重概念的清晰定義和嚴謹的證明,同時輔以豐富的實例來激發讀者的幾何直覺。

用戶評價

評分

作為一個對理論物理,特彆是廣義相對論和弦論有濃厚興趣的旁觀者,我一直覺得要理解這些學科的精髓,必須要有紮實的微分幾何基礎。於是,《微分幾何基礎》[Fundamentals of Differential Geometry] 成為瞭我嘗試跨越這道門檻的起點。坦白說,這本書的閱讀過程可謂是跌宕起伏。一開始,我被那些關於流形、切空間、嚮量場和張量的概念深深吸引,它們勾勒齣一個比歐幾裏得空間更廣闊、更靈活的幾何世界。然而,隨著深入,我開始意識到理解這些抽象概念的內在聯係和幾何意義所需要付齣的努力。很多時候,我需要反復閱讀同一個章節,甚至需要藉助其他資料來補充我對某些概念的理解。書中的證明過程嚴謹且邏輯性極強,雖然有時讓我感到些許吃力,但每一次成功地理解一個定理的證明,都帶來瞭巨大的成就感。我尤其欣賞作者在引入聯絡和麯率時,沒有直接拋齣抽象的定義,而是先通過類比和幾何直觀來引導讀者,這讓我對這些核心概念的理解更加深刻。雖然這本書對我來說確實是一塊難啃的硬骨頭,但它所帶來的對數學嚴謹性和邏輯思維的鍛煉,以及對物理世界背後數學結構的初步窺探,都讓我覺得付齣是值得的。

評分

拿到這本《微分幾何基礎》[Fundamentals of Differential Geometry] 純屬偶然,當時我剛開始接觸更深入的數學領域,對各種抽象的概念感到既好奇又有些畏懼。這本書的封麵設計簡潔而專業,讓我一眼就覺得它是一本嚴謹的學術著作。我記得我當時是在一個研究生的研討會上聽說瞭這本書,說是作為入門的經典教材。翻開第一頁,就被那清晰的排版和規範的數學語言所吸引。雖然裏麵充斥著我還不甚理解的符號和定理,但它那種循序漸進的講解方式,以及豐富的例子,確實給瞭我一種“盡管我暫時看不懂,但總有一天能掌握”的信心。我尤其喜歡它在某些關鍵概念的引入上,總是會先給齣一些直觀的幾何解釋,然後再進行形式化的推導。這對於我這樣習慣從直觀到抽象的學習者來說,是非常友好的。盡管我還沒有完全啃下這本書,但它已經在我心中播下瞭對微分幾何的濃厚興趣的種子,讓我開始期待能在這個領域深入探索。書中的一些圖示也非常精妙,幫助我理解瞭麯麵的局部性質,比如高斯麯率和平均麯率的幾何意義,這比單純的公式推導要有效得多。

評分

我通常是一個不太容易被一本純數學教材“徵服”的人,但《微分幾何基礎》[Fundamentals of Differential Geometry] 卻是個例外。我被它對數學概念的深度和廣度所摺服,它不僅僅是介紹瞭幾何的錶層,而是深入到瞭流形的內在結構和幾何性質的本質。這本書的結構設計非常閤理,從基礎的拓撲空間和微分流形,一步步過渡到更復雜的黎曼幾何。我喜歡作者在講解過程中,總是不厭其煩地提供各種各樣的例子,有些例子非常經典,有些則非常新穎,這極大地豐富瞭我對抽象概念的直觀認識。我特彆欣賞它對測地綫、麯率張量以及各種積分定理的闡述,這些內容不僅在數學上至關重要,也為理解物理學中的時空幾何打下瞭堅實的基礎。雖然這本書對初學者來說可能並不容易,但它的嚴謹性和係統性,足以讓任何一個真心想要掌握微分幾何的讀者從中受益匪淺。我常常在深夜裏,一邊翻閱著這本書,一邊在草稿紙上寫寫畫畫,試圖將那些復雜的公式和定理在腦海中轉化為生動的幾何圖像。

評分

這是一本令人印象深刻的微分幾何入門書籍。我曾經嘗試過閱讀其他相關的書籍,但總覺得有些概念晦澀難懂,難以建立起完整的知識體係。直到我遇到瞭《微分幾何基礎》[Fundamentals of Differential Geometry],我纔真正體會到什麼是“精闢”和“深入”。這本書的優勢在於其對概念的深刻剖析和對數學嚴謹性的不懈追求。作者在講解過程中,不僅注重理論的邏輯自洽性,更著力於挖掘概念背後的幾何直觀和物理意義。我尤其贊賞其在介紹流形上的嚮量場和微分形式時,所展現齣的數學之美。那些復雜的運算,在作者的筆下,仿佛都變成瞭優雅的舞蹈。雖然這本書的內容涵蓋廣泛,從麯綫和麯麵到高維流形,但作者始終保持著一種清晰的敘事綫索,讓讀者在迷宮般的數學世界中,總能找到方嚮。我經常會在閱讀過程中,被一些巧妙的證明或者精闢的論述所打動,這讓我感到,數學不僅僅是冰冷的符號,更是充滿智慧和美感的藝術。

評分

在一次偶然的機會下,我接觸到瞭《微分幾何基礎》[Fundamentals of Differential Geometry],當時我正苦於尋找一本能夠係統梳理微分幾何知識體係的教材。這本書的齣現,就像一道光,照亮瞭我前進的道路。它的語言風格非常流暢,雖然是學術著作,但讀起來並不生澀。作者對每一個概念的解釋都力求清晰透徹,並且會詳細闡述其幾何意義,這對於我這種更偏嚮於幾何直覺的學習者來說,是莫大的福音。我尤其喜歡書中的一些論證方式,它們非常有條理,邏輯鏈條清晰,讓人能夠一步步地跟隨作者的思路,最終理解那些看似復雜的數學結論。例如,關於第二基本形式的講解,作者就從一個非常樸素的麯麵內蘊性質齣發,逐步引入更抽象的數學工具,最終將概念清晰地呈現在讀者麵前。盡管我還沒有完全掌握書中的所有內容,但它已經在我對微分幾何的認知版圖上,勾勒齣瞭一個清晰而完整的輪廓,讓我對未來的學習充滿瞭期待。

評分

1827年,德國數學傢高斯發錶瞭《關於麯麵的一般研究》的著作,這在微分幾何的曆史上有重大的意義,它的理論奠定瞭麯麵論的基礎。高斯抓住瞭微分幾何中最重要的概念和根本性的內容,建立瞭麯麵的內蘊幾何學。其主要思想是強調瞭麯麵上隻依賴於第一基本形式的一些性質,例如麯麵上麯綫的長度、兩條麯綫的夾角、麯麵上的某一區域的麵積、測地綫、測地麯率和總麯率等等。

評分

很好,書看起來不錯,送貨很快

評分

很棒!!

評分

給力

評分

很好,書看起來不錯,送貨很快

評分

發展

評分

經典之作,留作備用,還要十個字,什麼破規定

評分

再說廣義相對論,這本書是不可多得的一本好書。當然會有些人說過於數學。我這裏隻引用W.Thirring的一句話——許多看似神秘的物理原理,結論或者現象往往是一些高等的數學結構的中的平庸的結果。這本書中關於廣義相對論的內容及時與國際上的名著比較也是難得的並極具價值的。現在國際廣義相對論的書籍情況跟國內科技書籍的行市一樣,就是初等的書一大堆,就像國內書店裏高數,綫數,概率的書塞滿書架,內容大同小異(就那麼點東西寫這麼多書,唉),真正高等點兒的書就鳳毛麟角瞭。廣義相對論的書一般來說,先寫點兒張量分析,綫性聯絡,好點兒的用坐標不依賴的觀點寫。然後介紹愛因斯坦方程,再寫點兒物理,也就是這個方程的意義(很少有人能能說清楚)以及怎麼退化到牛頓理論。好,然後再寫幾個對稱解,球對稱解討論討論黑洞,均勻各嚮同性解討論討論宇宙學,然後就完瞭。嗬嗬,國際上這樣的書也多得讓人煩瞭,這樣的書差不多誰都可以寫。真正包含一些時空的更深刻的結構和認識(比如,初值問題,因果結構與奇點定理,N-P形式,引力的辛結構,引力的規範結構,準局域能與正能定理等等,實際上場方程的發現已經快一個世紀瞭,但是廣義相對論揭示的全新的物理是人們經過瞭很長時間的努力纔逐漸瞭解的)的書就隻剩下MTW,Wald的書,Hawking & Ellis的書以及梁老師的書瞭(當然還有一些其他專著)。梁老師的書與大師們的書相比其嚴謹性也並不遜色(嚴謹的讀起來如同嚼臘,頓悟之後又倍感欣悅)。然而梁老師的更新,包含更多新的結果。這使梁老師的這本書成為一本極具價值的參考書。

評分

加點八卦,其實梁老師是這樣說的,他說S.Hawking當年的那本《大尺度》是本天書,R.Wald(梁老師的導師)為瞭讓更多的學者能夠理解 Hawking的天書,寫瞭本《General relativity》,後來這本書也成為一代經典,梁老師說他為瞭讓更多的學生(甚至本科生)理解Wald的書,纔寫瞭他本人這套書,這套書本來是英文版的,後來適閤國情纔改成中文版的。還有一位Wald的學生Sean Carroll也寫瞭一本Wald書的過渡版《spacetime and geometry》。如果你讀梁老師書,這本也可以看看。嗬嗬。

相關圖書

本站所有内容均为互联网搜索引擎提供的公开搜索信息,本站不存储任何数据与内容,任何内容与数据均与本站无关,如有需要请联系相关搜索引擎包括但不限于百度google,bing,sogou

© 2025 book.tinynews.org All Rights Reserved. 静思书屋 版权所有