算術教程(英文版) [A Course in Arithmetic]

算術教程(英文版) [A Course in Arithmetic] pdf epub mobi txt 電子書 下載 2025

[法] 賽瑞 著
想要找書就要到 靜思書屋
立刻按 ctrl+D收藏本頁
你會得到大驚喜!!
齣版社: 世界圖書齣版公司
ISBN:9787510005350
版次:1
商品編碼:10184600
包裝:平裝
外文名稱:A Course in Arithmetic
開本:24開
齣版時間:2009-08-01
用紙:膠版紙
頁數:115
正文語種:英語

具體描述

內容簡介

The first one is purely algebraic. Its objective is the classification ofquadratic forms over the field of rational numbers (Hasse-Minkowskitheorem). It is achieved in Chapter IV. The first three chapters contain somepreliminaries: quadratic reciprocity law, p-adic fields, Hilbert symbols.Chapter V applies the preceding results to integral quadratic forms indiscriminant + 1. These forms occur in various questions: modular functions,differential topology, finite groups. The second part (Chapters VI and VII) uses "analytic" methods (holomor-phic functions). Chapter VI gives the proof of the "theorem on arithmeticprogressions" due to Dirichlet; this theorem is used at a critical point in thefirst part (Chapter 111, no. 2.2). Chapter VII deals with modular forms,and in particular, with theta functions. Some of the quadratic forms ofChapter V reappear here.

內頁插圖

目錄

Preface
Part I-Algebraic Methods
ChapterI Finite fields
1-Generalities
2-Equations over a finite field
3-Quadratic reciprocity law
Appendix-Another proof of the quadratic reciprocity law
Chapter II p-adic fields
1-The ring Zp and the field
2-p-adic equations
3-The multiplicative group of
Chapter II nHilbert symbol
1-Local properties
2-Global properties
Chapter IV Quadratic forms over Qp and over Q
1-Quadratic forms
2-Quadratic forms over Q
3-Quadratic forms over Q
Appendix Sums of three squares
Chapter V Integral quadratic forms with discriminant
1-Preliminaries
2-Statement of results
3-Proofs
Part II-Analytic Methods
Chapter VI-The theorem on arithmetic progressions
1-Characters of finite abelian groups
2-Dirichlet series
3-Zeta function and L functions
4-Density and Dirichlet theorem
Chapter Vll-Modular forms
1-The modular group
2-Modular functions
3-The space of modular forms
4-Expansions at infinity
5-Hecke operators
6-Theta functions
Bibliography
Index of Definitions
Index of Notations

前言/序言

  This book is divided into two parts.
  The first one is purely algebraic. Its objective is the classification ofquadratic forms over the field of rational numbers (Hasse-Minkowskitheorem). It is achieved in Chapter IV. The first three chapters contain somepreliminaries: quadratic reciprocity law, p-adic fields, Hilbert symbols.Chapter V applies the preceding results to integral quadratic forms indiscriminant + 1. These forms occur in various questions: modular functions,differential topology, finite groups.  The second part (Chapters VI and VII) uses "analytic" methods (holomor-phic functions). Chapter VI gives the proof of the "theorem on arithmeticprogressions" due to Dirichlet; this theorem is used at a critical point in thefirst part (Chapter 111, no. 2.2). Chapter VII deals with modular forms,and in particular, with theta functions. Some of the quadratic forms ofChapter V reappear here.
  The two parts correspond to lectures given in 1962 and 1964 to secondyear students at the Ecole Normale Superieure. A redaction of these lecturesin the form of duplicated notes, was made by J.-J. Saosuc (Chapters l-IV)and J.-P. Ramis and G. Ruget (Chapters VI-VIi). They were very useful tome; I extend here my gratitude to their authors.

用戶評價

評分

很棒

評分

算術是數學的一個分支,其內容包括自然數和在各種運算下産生的性質,運算法則以及在實際中的應用。可是,在數學發展的曆史中算術的含義要廣泛得多。

評分

前兩個是加法和乘法的交換律,它說明人們可以交換加法或乘法中元素的次序。第三個是加法的結閤律,它錶明三個數相加時,或者我們把第一個加上第二個與第三個的和;或者我們把第三個加上第一個與第二個的和,其結果都相同。第四個是乘法的結閤律。最後一個是分配律,它錶明用一個整數去乘一個和時,我們可以用這整數去乘這和的每一項,然後把這些乘積加起來。

評分

給娃娃囤書中 好好學習 天天嚮上

評分

好難啊看不懂

評分

評分

短小精悍,名傢經典。

評分

自然數或正整數的數學理論就是眾所周知的算術.至於幾何、 代數等許多數學分支學科的名稱,都是後來很晚的時候纔有的。

評分

自然數或正整數的數學理論就是眾所周知的算術.至於幾何、 代數等許多數學分支學科的名稱,都是後來很晚的時候纔有的。

相關圖書

本站所有内容均为互联网搜索引擎提供的公开搜索信息,本站不存储任何数据与内容,任何内容与数据均与本站无关,如有需要请联系相关搜索引擎包括但不限于百度google,bing,sogou

© 2025 book.tinynews.org All Rights Reserved. 静思书屋 版权所有