内容简介
It is traditional for quantum theory of molecular systems (molecular quantum chemistry) to describe the properties of a many-atom system on the grounds of in- teratomic interactions applying the linear combination of atomic orbitals (LCAO) approximation in the electronic-structure calculations. The basis of the theory of the electronic structure of solids is the periodicity of the crystalline potential and Bloch- type one-electron states, in the majority of cases approximated by a linear combina- tion of plane waves (LCPW). In a quantum chemistry of solids the LCAO approach is extended to periodic systems and modified in such a way that the periodicity of the potential is correctly taken into account, but the language traditional for chemistry is used when the interatornic interaction is analyzed to explain the properties of the crystalline solids. At first, the quantum chemistry of solids was considered simply as the energy-band theory or the theory of the chemical bond in tetrahedral semi-conductors . From the beginning of the 1970s the use of powerful computer codes has become a common practice in molecular quantum chemistry to predict many properties of molecules in the first-principles LCAO calculations. In the condensed-matter studies the accurate description of the system at an atomic scale was much less advanced .
内页插图
目录
part i theory
1 introduction
2 space groups and crystalline structures
2.1 translation and point symmetry of cryst&lz;
2.1.1 symmetry of molecules and crystals: similarities and differences
2.1.2 translation symmetry of crystals. point symmetry of bravais lattices. crystal class
2.2 space groups
2.2.1 space groups of brawis lattices. symmorphic and nonsymmorphic space groups
2.2.2 three-periodic space groups
2.2.3 site symmetry in crystals. wyckoff positions
2.3 crystalline structures
2.3.1 crystal-structure types. structure information for computer codes
2.3.2 cubic structures: diamond, rocksalt, fluorite, zincblende, cesium chloride, cubic perovskite
2.3.3 tetragonoj structures: rutile, anatase and la~cuo4
2.3.4 orthorhombic structures: lamno3 and yba2cuso?
2.3.5 hexagonal and trigonal structures: graphite, wurtzite, corundum and scmno3
3 symmetry and localization of crystalline orbitals
3.1 translation and space symmetry of crystalline orbitals.bloch functions
3.1.1 symmetry of molecular and crystalline orbitals
3.1.2 irreducible representations of translation group. brillouin zone
3.1.3 stars of wavevectors. little groups. fhll representations of space groups
3.1.4 small representations of a little group. projective representations of point groups
3.2 site symmetry and induced representations of space groups
3.2.1 induced representations of point groups. localized molecular orbitals
3.2.2 induced representations of space groups in q-basis
3.2.3 induced representations of space groups in k-basis.band representations
3.2.4 simple and composite induced representations
3.2.5 simple induced representations for cubic space groups ok, and
3.2.6 symmetry of atomic and crystalline orbitals in mgo, si and srzro3 crystals
3.3 symmetry of localized crystalline orbitals. wannier functions
3.3.1 symmetry of localized orbitals and band representations of space groups
3.3.2 localization criteria in wannier-function generation
3.3.3 localized orbitals for valence bands: lcao approximation
3.3.4 variational method of localized wannier-function generation on the base of bloch functions
4 hartree-fock lcao method for periodic systems
4.1 one-electron approximation for crystals
4.1.1 one-electron and one-determinant approximations for molecules and crystals
4.1.2 symmetry of the one-electron approximation hamiltonian
4.1.3 restricted and unrestricted hartree-fock lcao methods for molecules
4.1.4 specific features of the hartree-fock method for a cyclic model of a crystal
4.1.5 restricted hartree-fock lcao method for crystals
4.1.6 unrestricted and restricted open-shell hartree-fock methods for crystals
4.2 special points of brillouin zone
4.2.1 superceus of three-dimensional bravais lattices
4.2.2 special points of brillouin-zone generating
4.2.3 modification of the monkhorst-pack special-points meshes
4.3 density matrix of crystals in the hartree-fock method
4.3.1 properites of the one-electron density matrix of a crystal
4.3.2 the one-electron density matrix of the crystal in the lcao approximation
4.3.3 interpolation procedure for constructing an approximate density matrix for periodic systems
5 electron correlations in molecules and crystals
5.1 electron correlations in molecules: post-hartree-fock methods
5.1.1 what is the electron correlation ?
5.1.2 configuration interaction and multi-configuration self-consistent field methods
5.1.3 coupled-cluster methods
5.1.4 many-electron perturbation theory
5.1.5 local electron-correlation methods
5.2 incremental scheme for local correlation in periodic systems
5.2.1 weak and strong electron-correlation
5.2.2 method of incfements: ground state
5.2.3 method of increments: valence-band structure and bandgap
5.3 atomic orbital laplace-transformed mp2 theory for periodic systems
5.3.1 laplace mp2 for periodic systems: unit-cell correlation energy
5.3.2 laplace mp2 for periodic systems:bandgap
5.4 local mp2 electron-correlation method for nonconducting crystals
5.4.1 local mp2 equations for periodic systems
5.4.2 fitted wannier functions for periodic local correlation methods
5.4.3 symmetry exploitation in local mp2 method for periodic systems
6 semiempirical lcao methods for molecules and periodic systems
6.1 extended h/ickel and mulliken-r/idenberg approximations
6.1.1 nonself-consistent extended h/ickel-tight-binding method
6.1.2 iterative mulliken-r/idenberg method for crystals
6.2 zero-differential overlap approximations for molecules and crystals
6.2.1 zero-differential overlap apl~roximations for molecules
6.2.2 complete and intermediate neglect of differential overlap for crystals
6.3 zero-differential overlap approximation in cyclic-cluster model
6.3.1 symmetry of cyclic-cluster model of perfect crystal
6.3.2 semiempirical lcao methods in cyclic-cluster model
6.3.3 implementation of the cyclic-clnster model in msindo and hartree-fock lcao methods
7 kohn-sham lcao method for periodic systems
7.1 foundations of the density-functional theory
7.1.1 the basic formulation of the density-functional theory
7.1.2 the kohn-sham single-particle equations
7.1.3 exchange and correlation functionals in the local density approximation
7.1.4 beyond the local density approximation
7.1.5 the pair density. orbital-dependent exchange-correlation functionals
7.2 density-functional lcao methods for solids
7.2.1 implementation of kohn-sham lcao method in crystals calculations
7.2.2 linear-scaling dft lcao methods for solids
7.2.3 heyd-scnseria-ernzerhof screened coulomb hybrid functional
7.2.4 are molecular exchange-correlation functionals transferable to crystals?
7.2.5 density-functional methods for strongly correlated systems: sic dft and dft+u approaches part ii applications
basis sets and pseudopotentlals in periodic lcao calculations
8.1 basis sets in the electron-structure calculations of crystals
8.1.1 plane waves and atomic-like basis sets. slater-type functions
8.1.2 molecular basis sets of gaussian-type functions
8.1.3 molecular basis sets adaptation for periodic systems
8.2 nonrelativistic effective core potentials and valence basis sets
8.2.1 effective core potentials: theoretical grounds
8.2.2 gaussian form of effective core potentials and valence basis sets in periodic lcao calculations
8.2.3 separable embedding potential
8.3 relativistic effective core potentials and valence basis sets
8.3.1 relativistic electronic structure theory: dirac-hartree-fock and dirac-kohn-sham methods for molecules
8.3.2 relativistic effective core potentials
8.3.3 one-center restoration of electronic structure in the core region
8.3.4 basis sets for relativistic calculations of molecules
8.3.5 relativistic lcao methods for periodic systems lcao calculations of perfect-crystal properties
9.1 theoretical analysis of chemical bonding in crystals
9.1.1 local properties of electronic structure in lcao hf and dft methods for crystals and post-hf methods for molecules
9.1.2 chemical bonding in cyclic-cluster model: local properties of composite crystalline oxides
9.1.3 chemical bonding in titanium oxides: periodic and molecular-crystalline approaches
9.1.4 wannier-type atomic functions and chemical bonding in crystals
9.1.5 the localized wannier functions for valence bands: chemical bonding in crystalline oxides
9.1.6 projection technique for population analysis of atomic orbitals. comparison of different methods of the chemical- bonding description in crystals
9.2 electron properties of crystals in lcao methods
9.2.1 one-electron properties: band structure, density of states, electron momentum density
9.2.2 magnetic structure of metal oxides in lcao methods: magnetic phases of lamnos and scmno3 crystals
9.3 total energy and related observables in lcao methods for solids
9.3.1 equilibrium structure and cohesive energy
9.3.2 bulk modulus, elastic constants and phase stability of solids: lcao ab-initio calculations
9.3.3 lattice dynamics and lcao calculations of vibrational frequencies
10 modeling and lcao calculations of point defects in crystals
10.1 symmetry and models of defective crystals
10.1.1 point defects in solids and their models
10.1.2 symmetry of supercell model of defective crystals
10.1.3 supercell and cyclic-clnster models of neutral and charged point defects
10.1.4 molecular-cluster models of defective solids
10.2 point defects in binary oxides
10.2.1 oxygen interstitials in magnesium oxide: supercell lcao calculations
10.2.2 neutral and charged oxygen vacancy in a1203 crystal: supercell and cyclic-clnster calculations
10.2.3 supercell modeling of metal-doped rutile tio2
10.3 point defects in perovskites
10.3.1 oxygen vacancy in srtio3
10.3.2 superceu model of fe-doped srtio3
10.3.3 modeling of solid solutions of lacsrl-cmno3
11 surface modeling in lcao calculations of metal oxides
11.1 diperiodic space groups and slab models of surfaces
11.1.1 diperiodic (layer) space groups
11.1.2 oxide-surface types and stability
11.1.3 single- and periodic-slab models of mgo and tio2 surfaces
11.2 surface lcao calculations on tio2 and sno2
11.2.1 cluster models of (110) tio2
11.2.2 adsorption of water on the tio2 (rutile) (110) surface: comparison of periodic lcao-pw and embedded-cluster lcao calculations
11.2.3 single-slab lcao calculations of bare and hydroxylated sno2 surfaces
11.3 slab models of srtio3, srgro3 and lamno3 surfaces
11.3.1 hybrid hf-dft comparative study of srzro3 and srtio3 (001) surface properties
11.3.2 f center on the srtio3 (001) surface
11.3.3 slab models of lamno3 surfaces
a matrices of the symmetrical supercell transformations of 14 three-dimensional bravais lattices breciprocal matrices of the symmetric supercell transformations of the three cubic bravais lattices c computer programs for periodic calculations in basis of localized orbitals
references
index
前言/序言
《量子化学与材料探索:从基础到前沿》 本书将带领读者深入探索量子化学的迷人世界,并揭示其在理解和设计新型材料方面的强大力量。本书旨在为那些对物质微观结构及其性质背后的量子力学原理感兴趣的学生、研究人员及工程师提供一个全面而深入的导论。我们将从量子力学的基本概念出发,逐步构建起理解原子、分子和固体行为所需的理论框架。 核心概念的循序渐进: 本书的起点是量子化学的基石——薛定谔方程。我们将详细阐述其物理意义,并介绍求解该方程的各种方法,包括近似方法的原理与应用。读者将学习到如何利用量子力学来描述电子在原子和分子中的行为,理解原子轨道的概念,以及原子轨道如何组合形成分子轨道。 从分子到晶体: 本书将重点关注如何将量子化学的原理应用于周期性体系,即晶体。我们将详细介绍线性组合原子轨道(LCAO)方法,这是一种在第一性原理计算中广泛应用的近似方法。通过LCAO方法,我们可以构建出描述固体中电子波函数的基组,并进一步计算其能量和性质。 第一性原理计算的精髓: “第一性原理”计算意味着我们仅依赖于基本的物理常数和量子力学原理,而不引入任何经验参数。本书将深入探讨实现这一目标的关键技术,包括: 哈特里-福克(Hartree-Fock, HF)方法: 这是最早的自洽场(SCF)方法之一,它将多电子波函数近似为单电子波函数的斯莱特行列式。我们将详细介绍HF方法的原理、优缺点以及其在固体计算中的局限性。 密度泛函理论(Density Functional Theory, DFT): 作为当前应用最广泛的第一性原理计算方法,DFT将电子体系的能量视为电子密度的一个泛函。本书将深入剖析DFT的核心概念,包括 Hohenberg-Kohn定理、Kohn-Sham方程,并重点介绍各种交换-关联泛函的性质、适用范围和发展趋势。我们将详细阐述如何利用DFT来计算晶体的电子结构、能量、力以及各种激发态性质。 超越HF和DFT的方法: 为了更精确地描述电子关联效应,本书还将介绍一些更高级的计算方法,如微扰理论(如MPn方法)和耦合簇(Coupled Cluster, CC)理论,并讨论它们在固体量子化学计算中的潜在应用和挑战。 晶体结构与性质的连接: 本书将重点关注第一性原理计算如何为我们揭示晶体的结构与性质之间的深刻联系。我们将学习如何: 计算电子能带结构: 绘制电子在布里渊区内的能量随动量变化的曲线,从而理解材料的导电性、光学性质和磁性等。 计算态密度(Density of States, DOS): 分析不同能量的电子在体系中出现的可能性,这对于理解材料的光学吸收、电荷传输以及化学反应活性至关重要。 计算晶格动力学: 研究晶体中原子振动的模式(声子),这直接影响材料的热容、热导率以及超导电性等。 计算弹性常数和机械性能: 了解材料在受力时的形变行为,预测其强度、硬度和韧性。 计算化学势和相稳定性: 预测不同化学组分在特定条件下的稳定存在形式,指导材料的合成与相变研究。 研究表面与界面性质: 探讨晶体表面和不同晶体之间界面的电子结构和化学反应活性,这对于催化、传感器和半导体器件的设计至关重要。 实际应用与前沿展望: 本书的最后部分将着眼于第一性原理计算在现代材料科学研究中的广泛应用,包括但不限于: 新能源材料: 如锂离子电池材料、太阳能电池材料、催化剂等。 半导体与电子材料: 探索新型半导体材料的电子特性,设计高性能电子器件。 磁性材料: 理解和设计具有特定磁学行为的材料。 超导材料: 探索高温超导的微观机制。 二维材料: 如石墨烯、过渡金属二硫化物(TMDs)等新型二维材料的电子和光学性质。 本书不仅提供理论知识,还将引导读者了解实际的计算软件和工作流程,使读者能够独立进行相关的理论计算和数据分析。通过本书的学习,读者将能够运用量子化学的第一性原理方法,更深入地理解物质的本质,并为设计和发现具有革命性性能的新材料提供强大的理论工具。