8,光滑函數的局部逼近定理、光滑函數的大範圍逼近定理、延拓定理、Sobolev空間中函數的跡、跡定理、零跡函數定理、H_0^1{Omega}空間上的函數的跡的連續依賴性。Gagliardo-Nirenberg—Sobolev 不等式。
評分3,多重綫性映射、雙綫性型、矩陣的相閤變換、雙綫性型的秩、左根基、對稱雙綫性型與斜對稱雙綫性型、二次型、二次型的規範型、化二次型為規範型的方法、實二次型、慣性定理、正定二次型與正定矩陣、Jacobi方法、Sylvester定理、斜對稱二次型的規範型、Pfaff型。
評分5,球麵平均法、Kirchhoff公式、Poisson公式、d'Aleert公式、降維法、波動方程Cauchy問題解的穩定性、波的彌散、依賴集閤、Duhamel原理、波動方程的邊值問題與混閤問題、Goursat問題。
評分6,波動方程混閤問題解的唯一性、波動方程混閤問題解的穩定性、Holder不等式、Friedrichs不等式。
評分7,仿射群、Euclid空間的運動群、保距變換群、凸集、Minkowski空間、僞歐氏空間、Lorenz群、仿射空間上的二次函數、化二次函數為規範型、Euclid空間上的二次函數。
評分1,Zassenhaus引理、Jordan-Holder定理、帶算子的群、自同態環、自同構類群、Sylow定理、特徵子群、Abel群、有限生成的Abel群、Frobenius-Stickelberger定理、有限Abel群的基本定理。
評分5,球麵平均法、Kirchhoff公式、Poisson公式、d'Aleert公式、降維法、波動方程Cauchy問題解的穩定性、波的彌散、依賴集閤、Duhamel原理、波動方程的邊值問題與混閤問題、Goursat問題。
評分4,R^n上的Lebesgue測度與Lebesgue可測集、Jordan可測集、Lebesgue—Stieltjes 測度、集閤的單調類、集閤的Sigma-可加類、單調類定理、Suslin集、Suslin運算、Suslin集。
評分9, Lebesgue積分與Riemann積分的關係、符號測度、符號測度的Hahn分解與Jordan分解、Radon-Nikodym定理、測度空間的乘積。
本站所有内容均为互联网搜索引擎提供的公开搜索信息,本站不存储任何数据与内容,任何内容与数据均与本站无关,如有需要请联系相关搜索引擎包括但不限于百度,google,bing,sogou 等
© 2025 book.tinynews.org All Rights Reserved. 静思书屋 版权所有