內容簡介
This book is a standard for a complete description of the methods for unconstrained optimization and the solution ofnonlinear equations....this republication is most welcome and this volume should be in every library. Of course, there exist more recent books on the topics and somebody interested in the subject cannot be satiated by looking only at this book. However, it contains much quite-well-presented material and I recommend reading it before going ,to other.publications.
內頁插圖
精彩書評
★"...For anyone who needs to go beyond the basic treatment of numerical methods for nonlinear equations given in any number of standard numerical texts this book is ideal"
——Duncan Lawson, Mathematics Today, August 1998.
★"With 206 exercises aiming to illustrate and develop the ideas in the text and 134 bibliographical references, this very well written and organized monograph provides the basic inJbrmation needed to understand both the theory and the practice qf the methods'for solving problems related to unconstrained optimization and systems of nonlinear equations."
——Alfred Braier, Buletinul lnstitutului Politehnic Din lasi, Tomul
XLII(XLVI), Fasc. 3-4, 1996.
★"This book is a standardJor a complete description of the methods for unconstrained optimization and the solution of nonlinear equations. ...this republication is most welcome and this volume should be in every library. Of course, there exist more recent books on the topic's and somebody interested in the subject cannot be satisfied by looking only at this book. However, it contains much quite-well-presented material and I recommend reading it before going to other publications."
——Claude Brejinski, Numerical Algorithms, 13, October 1996.
目錄
PREFACE TO THE CLASSICS EDITION
PREFACE
1 INTRODUCTION
1.1 Problems to be considered
1.2 Characteristics of"real-world" problems
1.3 Finite-precision arithmetic and measurement of error
1.4 Exercises
2 NONLINEAR PROBLEMS IN ONE VARIABLE
2.1 What is not possible
2.2 Newton's method for solving one equation in one unknown
2.3 Convergence of sequences of real numbers
2.4 Convergence of Newton's method
2.5 Globally convergent methods for solving one equation in one unknown
2.6 Methods when derivatives are unavailable
2.7 Minimization of a function of one variable
2.8 Exercises
3 NUMERICAL LINEAR ALGEBRA BACKGROUND
3.1 Vector and matrix norms and orthogonality
3.2 Solving systems of linear equations——matrix factorizations
3.3 Errors in solving linear systems
3.4 Updating matrix factorizations
3.5 Eigenvalues and positive definiteness
3.6 Linear least squares
3.7 Exercises
4 MULTIVARIABLE CALCULUS BACKGROUND
4.1 Derivatives and multivariable models
4.2 Multivariable finite-difference derivatives
4.3 Necessary and sufficient conditions for unconstrained minimization
4.4 Exercises 83
5 NEWTON'S METHOD FOR NONLINEAR EQUATIONS AND UNCONSTRAINED MINIMIZATION
5.1 Newton's method for systems of nonlinear equations
5.2 Local convergence of Newton's method
5.3 The Kantorovich and contractive mapping theorems
5.4 Finite-difference derivative methods for systems of nonlinear equations
5.5 Newton's method for unconstrained minimization
5.6 Finite-difference derivative methods for unconstrained minimization
5.7 Exercises
6 GLOBALLY CONVERGENT MODIFICATIONS OF NEWTON'S METHOD
6.1 The quasi-Newton framework
6.2 Descent directions
6.3 Line searches
6.3.1 Convergence results for properly chosen steps
6.3.2 Step selection by backtracking
6.4 The model-trust region approach
6.4.1 The locally constrained optimal ("hook") step
6.4.2 The double dogleg step
6.4.3 Updating the trust region
6.5 Global methods for systems of nonlinear equations
6.6 Exercises
7 STOPPING, SCALING, AND TESTING
7.1 Scaling
7.2 Stopping criteria
7.3 Testing
7.4 Exercises
8 SECANT METHODS FOR SYSTEMS OF NONLINEAR EQUATIONS
8.1 Broyden's method
8.2 Local convergence analysis of Broyden's method
8.3 Implementation of quasi-Newton algorithms using Broyden's update
8.4 Other secant updates for nonlinear equations
8.5 Exercises
9 SECANT METHODS FOR UNCONSTRAINED MINIMIZATION
9.1 The symmetric secant update of Powell
9.2 Symmetric positive definite secant updates
9.3 Local convergence of positive definite secant methods
9.4 Implementation of quasi-Newton algorithms using the positive definite secant update
9.5 Another convergence result for the positive definite secant method
9.6 Other secant updates for unconstrained minimization
9.7 Exercises
10 NONLINEAR LEAST SQUARES
10.1 The nonlinear least-squares problem
10.2 Gauss-Newton-type methods
10.3 Full Newton-type methods
10.4 Other considerations in solving nonlinear least-squares problems
10.5 Exercises
11 METHODS FOR PROBLEMS WITH SPECIAL STRUCTURE
11.1 The sparse finite-difference Newton method
11.2 Sparse secant methods
11.3 Deriving least-change secant updates
11.4 Analyzing least-change secant methods
11.5 Exercises
A APPENDIX: A MODULAR SYSTEM OF ALGORITHMS FOR UNCONSTRAINED MINIMIZATION AND NONLINEAR EQUATIONS (by Robert Schnabel)
B APPENDIX: TEST PROBLEMS (by Robert SchnabeI)
REFERENCES
AUTHOR INDEX
SUBJECT INDEX
前言/序言
國外數學名著係列(續一 影印版)42:無約束最優化與非綫性方程的數值方法 [Numerical Methods for Unconstrained Optimization and Nonlinear Equations] --- 圖書簡介 本捲《國外數學名著係列(續一 影印版)》匯集瞭數學分析、計算數學和應用數學領域中具有裏程碑意義的經典著作。本期特彆呈現的影印版(第42捲)聚焦於一個對現代科學與工程計算至關重要的核心領域:無約束最優化理論與非綫性方程的數值求解。 本書並非一本通用的數學教材,而是一部深入探討特定計算方法論的專著。它係統性地梳理和闡述瞭在處理沒有邊界限製的函數極小化問題,以及求解一組非綫性代數方程組時所采用的數學框架、算法構造、收斂性分析和實際計算技巧。 核心主題與內容結構 本書的核心內容可以劃分為兩大緊密關聯的數學分支:無約束最優化方法與非綫性方程組的數值解法。 第一部分:無約束最優化方法 無約束最優化問題,即尋找函數 $f(mathbf{x})$ 的最小值點 $mathbf{x}^ in mathbb{R}^n$,是機器學習、經濟學、控製理論和工程設計中普遍存在的數學模型。本書詳細介紹瞭求解這類問題的經典迭代算法及其演進。 1. 基本概念與預備知識: 本部分首先迴顧瞭函數空間、梯度、Hessian 矩陣的定義,以及優化問題的適定性(Well-posedness)討論。對局部極小點存在的充分必要條件(一階和二階最優性條件)進行瞭嚴格的數學推導。 2. 一維搜索方法(Line Search Methods): 這是所有迭代算法的基礎。書中詳盡分析瞭如何確定每一步迭代中的步長 $alpha_k$。內容涵蓋瞭精確綫搜索(如利用黃金分割法、Fibonacci 方法在特定條件下的應用)和不精確綫搜索(如 Wolfe 條件、Armijo 條件)的數學準則。這些準則保證瞭算法既能保證下降,又不會“走得太慢”。 3. 梯度下降法及其變體: 從最基礎的梯度法(Steepest Descent Method)齣發,本書剖析瞭其綫性收斂的局限性。隨後,重點轉嚮瞭收斂速度更快的擬牛頓法(Quasi-Newton Methods)。 擬牛頓方法的構建: 詳細解釋瞭如何通過秩一修正或秩二修正(如 DFP、BFGS 公式)來近似計算 Hessian 矩陣的逆(或Hessian矩陣本身),從而避免瞭每一步都進行昂貴的矩陣求逆或分解操作。BFGS 公式因其齣色的穩定性和收斂速度,在書中占據瞭重要篇幅。 4. 牛頓法及其修正: 牛頓法以其二次收斂的特性成為理論上的黃金標準。本書深入討論瞭標準牛頓法在實際應用中的兩大難題:Hessian 矩陣可能不滿秩或不定性,以及計算成本高昂。為此,書中引入瞭修正牛頓法(Modified Newton Methods)的概念,探討瞭如何通過在 Hessian 矩陣上添加對角擾動或使用信賴域方法(Trust-Region Methods)來確保迭代方嚮的有效性。 5. 共軛梯度法(Conjugate Gradient Methods): 對於大規模問題,直接存儲和更新 $n imes n$ 的矩陣(如擬牛頓法)變得不切實際。共軛梯度法提供瞭一種僅依賴嚮量運算的有效替代方案。本書詳細闡述瞭 Fletcher-Reeves(FR)、Polak-Ribière-Polyak(PRP)和 Hestenes-Stiefel(HS)等經典共軛梯度算法的構建原理及其在保證方嚮共軛性方麵的理論基礎。 第二部分:非綫性方程組的數值解法 求解非綫性方程組 $mathbf{F}(mathbf{x}) = mathbf{0}$ 是工程建模中的另一項核心任務。本書將最優化的思路巧妙地轉化為方程求解問題,特彆是通過最小化 $|mathbf{F}(mathbf{x})|^2$ 來間接求解。 1. 迭代基礎: 從最基礎的逐坐標法(Jacobi, Gauss-Seidel for nonlinear systems)的局限性齣發,本書轉嚮瞭更高效的局部綫性化方法。 2. 非綫性方程的牛頓法: 這是求解非綫性方程的核心工具。書中對非綫性牛頓法進行瞭細緻的分析,即在每一步迭代中,求解綫性係統 $J(mathbf{x}_k) mathbf{s}_k = -mathbf{F}(mathbf{x}_k)$,其中 $J$ 是 $mathbf{F}$ 的 Jacobian 矩陣。重點分析瞭 Jacobian 矩陣的計算、稀疏矩陣技術以及在奇異點附近的收斂行為。 3. 擬牛頓法在方程求解中的應用: 為瞭避免每步都精確計算並分解 Jacobian 矩陣及其逆,書中介紹瞭擬牛頓方法在方程求解中的變體,如 Broyden 方法。Broyden 方法通過低秩更新來近似 Jacobian 矩陣的逆,從而實現瞭收斂速度與計算效率之間的良好摺衷。 4. 阻尼牛頓法與信賴域方法: 在求解非綫性方程時,如果初始點離解較遠,直接應用牛頓法可能會導緻不收斂。本書討論瞭如何結閤綫搜索(阻尼)或信賴域框架來穩定牛頓法的每一步,確保找到一個可行的下降方嚮,從而保證全局收斂性。 學術價值與目標讀者 本書的影印版保持瞭原著的嚴謹性和深度,是計算數學領域的一部經典參考書。其內容結構嚴謹,數學推導詳盡,注重算法背後的理論支撐——收斂速度的分析(綫性、超綫性、二次收斂)和算法的魯棒性。 本書適閤於高等院校的研究生、博士生以及從事數值分析、優化、運籌學、控製係統或大規模科學計算領域的工程師和研究人員。它為讀者提供瞭從一維優化到高維、大規模問題的數值方法論的堅實基礎。閱讀本書要求讀者具備紮實的實分析和綫性代數基礎,並對數值方法有濃厚的興趣和深入的探究精神。它不是一本快速入門的“教程”,而是一部需要細緻研讀的“手冊”。