光子輔助的毫米波通信技術(精)

光子輔助的毫米波通信技術(精) pdf epub mobi txt 電子書 下載 2025

餘建軍 編
圖書標籤:
  • 光子毫米波
  • 毫米波通信
  • 光通信
  • 無綫通信
  • 高速通信
  • 光子技術
  • 通信工程
  • 信號處理
  • 電磁波
  • 信息技術
想要找書就要到 靜思書屋
立刻按 ctrl+D收藏本頁
你會得到大驚喜!!
店鋪: 土星圖書專營店
齣版社: 科學
ISBN:9787030561497
商品編碼:29679183400
開本:16
齣版時間:2018-03-01

具體描述

基本信息

  • 商品名稱:光子輔助的毫米波通信技術(精)
  • 作者:餘建軍
  • 定價:128
  • 齣版社:科學
  • ISBN號:9787030561497

其他參考信息(以實物為準)

  • 齣版時間:2018-03-01
  • 印刷時間:2018-03-01
  • 版次:1
  • 印次:1
  • 開本:16開
  • 包裝:精裝
  • 頁數:286
  • 字數:360韆字

內容提要

餘建軍著的《光子輔助的毫米波通信技術(精)》 介紹瞭基於光子輔助的毫米波通信的新技術。主要內 容包括光子輔助的單載波和多載波的矢量毫米波信號 産生技術,利用光縴極化復用、天綫極化復用、多波 段復用等多輸入多輸齣技術的寬帶毫米波信號傳輸技 術,以及各種用於提高傳輸容量和提高接收機性能算 法的、基於外差相乾探測的數字信號處理技術。在網 絡架構方麵介紹瞭雙嚮全雙工毫米波傳輸和光縴無綫 無縫傳輸,也介紹瞭在大容量和長距離傳輸方麵的* 新研究成果。本書概括瞭光子輔助毫米波通信中從係 統到網絡的新技術,從原理到應用都有係統而又詳細 的介紹。
     本書適閤通信領域的工程技術人員,以及高等院 校通信工程等相關專業的研究生和教師閱讀。
    

目錄


前言
第1章 基於強度調製器的單載波矢量毫米波信號傳輸係統
1.1 引言
1.2 光子輔助毫米波産生技術
1.3 馬赫一曾德爾調製器工作原理
1.4 基於馬赫一曾德爾調製器載波抑製方式的矢量信號産生係統
1.4.1 基於外部調製器産生載波抑製的毫米波信號
1.4.2 基於外部調製器産生載波抑製的矢量毫米波信號
1.4.3 理論推導
1.4.4 實驗測試
1.5 基於馬赫一曾德爾調製器的四倍頻毫米波産生技術
1.6 基於單個馬赫一曾德爾調製器的偏振復用矢量信號傳輸係統
1.6.1 原理介紹
1.6.2 實驗裝置
1.6.3 實驗結果
1.7 小結
參考文獻
第2章 基於相位調製器的單載波矢量毫米波信號傳輸係統
2.1 基於相位調製器的光子倍頻的矢量毫米波信號生成
2.2 基於相位調製器的隨機光子倍頻的矢量毫米波信號生成
2.2.1 數值仿真
2.2.2 實驗裝置
2.2.3 實驗結果
2.3 小結
參考文獻
第3章 基於直接調製激光器産生SSB和DSB矢量信號
3.1 引言
3.2 原理介紹
3.3 實驗裝置和實驗結果
3.4 小結
參考文獻
第4章 高性能的單載波矢量毫米波生成技術
4.1 光載波抑製矢量毫米波中的平衡預編碼技術
4.2 相位因子優化的預編碼矢量信號係統
4.2.1 原理介紹
4.2.2 實驗裝置
4.2.3 實驗結果
4.3 基於外差拍頻和強度調製器的矢量信號産生
4.4 無預編碼的光子輔助SSB單偏振毫米波信號産生
4.5 無預編碼的光子輔助SSB雙偏振毫米波信號産生
4.6 小結
參考文獻
第5章 基於預編碼的OFDM矢量毫米波信號傳輸係統
5.1 引言
5.2 載波抑製OFDM矢量信號係統
5.3 偶數階載波抑製OFDM矢量信號係統
5.3.1 實驗裝置
5.3.2 實驗結果
5.4 奇數階載波抑製w波段毫米波OFDM矢量信號係統


photonic-assisted millimeter-wave communication technologies (advanced) Introduction The ever-increasing demand for higher data rates and lower latency in wireless communication systems has pushed the boundaries of traditional radio frequency (RF) technologies. Millimeter-wave (mmWave) frequencies, ranging from 30 GHz to 300 GHz, offer vast untapped bandwidth, promising terabit-per-second data rates and enabling a new era of wireless applications such as augmented reality, virtual reality, autonomous driving, and high-definition video streaming. However, mmWave signals suffer from significant path loss, atmospheric attenuation, and blockage by obstacles, posing substantial challenges for reliable and efficient wireless transmission. To overcome these limitations and fully harness the potential of mmWave frequencies, innovative solutions are required. Photonic technologies, with their inherent ability to process signals at extremely high frequencies and with high precision, offer a compelling pathway to augment and enhance mmWave communication systems. This book delves into the cutting-edge realm of photonic-assisted mmWave communication technologies, exploring how the synergistic integration of optics and mmWave electronics can pave the way for next-generation wireless networks. This comprehensive exploration aims to provide a deep understanding of the fundamental principles, enabling technologies, and diverse applications of photonic assistance in mmWave communication. We will meticulously dissect the intricate interplay between optical and electrical domains, highlighting the unique advantages and technical considerations that arise from their integration. The "advanced" designation signifies a thorough and in-depth treatment of the subject matter, suitable for researchers, engineers, and advanced students seeking to grasp the nuances and future trajectory of this rapidly evolving field. Chapter Overview This book is structured to provide a progressive and comprehensive understanding of photonic-assisted mmWave communication. We begin by laying the foundational groundwork, then delve into specific photonic techniques and their integration challenges, and finally explore the diverse applications and future outlook. Part I: Foundations of Millimeter-Wave Communication and Photonic Concepts Chapter 1: The mmWave Spectrum and its Potential: This chapter will introduce the electromagnetic spectrum, with a particular focus on the millimeter-wave bands. We will discuss the inherent advantages of mmWave frequencies, such as vast bandwidth availability, and their implications for achieving ultra-high data rates. The unique propagation characteristics of mmWave signals, including high path loss, atmospheric absorption, and sensitivity to blockage, will be thoroughly examined. Furthermore, we will explore the driving forces behind the adoption of mmWave for future wireless systems, including the limitations of sub-6 GHz bands and the emerging use cases that necessitate higher bandwidths. Chapter 2: Fundamentals of Optical Communication and Photonics: This chapter will provide a concise yet thorough review of the core principles of optical communication. We will cover the generation, transmission, and detection of optical signals, including various light sources (lasers, LEDs), optical fibers, and photodetectors. Essential photonic concepts such as modulation techniques (intensity modulation, phase modulation), multiplexing schemes (WDM, TDM), and signal processing in the optical domain will be introduced. The unique properties of light, including its high frequency, low loss in optical fibers, and inherent parallelism, will be emphasized as key enablers for photonic assistance. Chapter 3: Interfacing Optical and Electrical Domains: A critical aspect of photonic-assisted mmWave communication is the seamless conversion between optical and electrical signals. This chapter will focus on the technologies and challenges associated with this interface. We will discuss various optoelectronic conversion devices, including high-speed photodetectors (e.g., PIN diodes, APDs, UTC-PDs) and electro-optic modulators (e.g., Mach-Zehnder modulators, electro-absorption modulators). The performance limitations of these devices, such as bandwidth, responsivity, noise, and power consumption, will be analyzed in detail. Techniques for optimizing this interface for mmWave frequencies will be explored. Part II: Photonic Techniques for mmWave Communication Enhancement Chapter 4: Photonic Generation of mmWave Signals: Generating stable and spectrally pure mmWave signals directly from electrical sources can be complex and power-hungry. This chapter will explore various photonic techniques for efficient mmWave signal generation. We will discuss heterodyne and homodyne optical mixing, where two optical carriers with a specific frequency difference are mixed to generate mmWave frequencies. Techniques like optical frequency combs and the use of external modulators to imprint mmWave information onto optical carriers will be analyzed. The advantages of photonic generation in terms of spectral purity, tunability, and potential for reconfigurability will be highlighted. Chapter 5: Photonic Beamforming and Antenna Array Control: Beamforming is crucial for overcoming mmWave path loss by directing the signal towards the intended receiver. This chapter will detail how photonic techniques can enable advanced beamforming capabilities for mmWave antenna arrays. We will explore optical phased arrays (OPAs), where the phase of optical signals feeding individual antenna elements is controlled optically, leading to precise and fast beam steering. Techniques for photonic control of RF phase shifters and amplitude controllers for mmWave antenna arrays will be examined. The benefits of photonic beamforming, including reduced hardware complexity, lower power consumption, and increased flexibility, will be discussed. Chapter 6: Photonic Signal Processing for mmWave Systems: Signal processing plays a vital role in modern communication systems, encompassing tasks like equalization, filtering, and modulation/demodulation. This chapter will investigate how photonic signal processing can be leveraged for mmWave applications. We will discuss optical signal processing techniques that can perform complex operations on mmWave signals in the optical domain, potentially offering advantages in speed and efficiency over their electronic counterparts. This includes optical filtering, optical switching, and optical frequency conversion for channel selection and signal manipulation. Chapter 7: Photonic Approaches for mmWave Channel Equalization and Mitigation of Impairments: The challenging propagation environment of mmWave frequencies often necessitates sophisticated channel equalization techniques to combat multipath fading, dispersion, and other impairments. This chapter will explore photonic solutions for addressing these issues. We will analyze how optical signal processing can be used to implement adaptive equalizers, mitigating channel distortions. Furthermore, we will examine photonic techniques for compensating for atmospheric attenuation and improving signal-to-noise ratio (SNR) in mmWave links. Part III: Integration Architectures and Applications Chapter 8: Hybrid Optoelectronic Architectures for mmWave Communication: The integration of photonic and electronic components leads to various hybrid architectures. This chapter will analyze different architectural approaches that combine optical and electronic functionalities for mmWave communication. We will discuss architectures such as radio-over-fiber (RoF) systems, where mmWave signals are transported over optical fiber, and integrated optoelectronic transceivers for mmWave base stations and user equipment. The trade-offs and performance implications of these hybrid designs will be thoroughly evaluated. Chapter 9: mmWave Wireless Backhaul and Fronthaul with Photonic Integration: High-capacity wireless backhaul and fronthaul networks are essential for supporting dense deployments of mmWave small cells and base stations. This chapter will focus on the role of photonic-assisted mmWave technologies in enabling efficient and cost-effective backhaul and fronthaul solutions. We will explore how RoF and other photonic integration techniques can provide the necessary bandwidth and low latency for connecting the radio access network to the core network, facilitating the deployment of future 5G and beyond wireless infrastructure. Chapter 10: mmWave Networks for 5G and Beyond: Photonic Enablement: This chapter will delve into the specific applications and benefits of photonic-assisted mmWave communication within the context of 5G and future wireless generations (e.g., 6G). We will discuss how these technologies can empower enhanced mobile broadband (eMBB), ultra-reliable low-latency communication (URLLC), and massive machine-type communication (mMTC) services. Use cases such as fixed wireless access (FWA), industrial IoT, smart cities, and vehicular communication will be examined in detail, highlighting the unique contributions of photonic assistance. Chapter 11: Advanced Topics and Future Trends: This chapter will explore emerging research frontiers and future trends in photonic-assisted mmWave communication. We will discuss topics such as AI-driven photonic signal processing, reconfigurable photonic devices for mmWave, integration with new materials, and the challenges and opportunities for miniaturization and cost reduction. The long-term vision for photonic-assisted mmWave systems and their potential impact on future wireless ecosystems will be considered. Conclusion This book provides a deep and comprehensive exploration of photonic-assisted mmWave communication technologies. By meticulously detailing the fundamental principles, state-of-the-art techniques, integration challenges, and diverse applications, it aims to equip readers with the knowledge necessary to understand and contribute to this dynamic field. The integration of photonics offers a powerful and elegant solution to unlock the full potential of the vast mmWave spectrum, paving the way for the next generation of ultra-high-speed, low-latency wireless communication systems. The advanced treatment of the subject matter ensures that this book serves as an invaluable resource for researchers, engineers, and students seeking to stay at the forefront of wireless innovation.

用戶評價

評分

坦率地說,當我翻開這本書時,最初是抱著一種審慎的懷疑態度的。這個領域的文獻汗牛充棟,想要從中提煉齣真正有價值、能落地的新東西,難度不亞於沙裏淘金。然而,這本書的敘事節奏和邏輯鋪陳,卻以一種近乎完美的節奏牽引著我的注意力。它沒有陷入晦澀的數學公式的泥潭,而是巧妙地將復雜的物理模型轉化為直觀的工程實現路徑。特彆是關於超大規模MIMO陣列在毫米波頻段的實際部署挑戰,書中提齣的基於光控相控陣的波束賦形方法,簡直是教科書級彆的解決方案。它不僅解釋瞭“為什麼”當前的技術會遇到瓶頸,更詳盡地闡述瞭“如何”利用光波的特性來優雅地繞過這些限製。書中對於功耗和成本效益的分析,也顯示齣作者紮實的工程背景,使得理論探討不至於空中樓閣。對於那些正在進行新一代無綫通信係統原型設計的人員來說,這本書無疑是一份不可或缺的實戰指南,其提供的不僅僅是理論深度,更是工程實踐的智慧結晶。

評分

這部作品的問世,無疑為當前信息通信領域的研究者和工程師們投下瞭一顆重磅炸彈。它所構建的理論框架,深邃而又極具前瞻性,讓人在閱讀過程中,仿佛置身於一個前沿科技的迷宮中,每一步探索都伴隨著知識的醍醐灌頂。作者沒有止步於對現有技術的羅列和修補,而是大膽地將看似毫不相關的兩個領域——光子學與毫米波通信——進行瞭深層次的耦閤與重構。書中對高頻電磁波傳播特性的剖析,細緻入微,即便是對該領域有多年經驗的專傢,也能從中發現新的視角。尤其是在探討如何利用光子技術在保持信號完整性的同時,突破傳統電子器件的帶寬瓶頸時,作者展現瞭驚人的洞察力,一係列創新的調製方案和集成架構被清晰地呈現在我們麵前。這種跨學科的融閤,絕非簡單的技術嫁接,而是對底層物理規律的深刻理解和創新應用,預示著未來無綫通信將邁嚮一個全新的物理層級。閱讀完後,我強烈感受到瞭一種知識的洗禮,它不僅提供瞭解決當前技術難題的工具,更激發瞭對未來十年通信技術可能形態的無限遐想。

評分

閱讀這本書的過程,更像是一次對“極限思維”的訓練。作者挑戰瞭傳統電子學思維定勢,大膽引入瞭光子學中的高速、低噪聲特性來解決毫米波通信中的能效和帶寬瓶頸。書中對新型光電探測器和集成光波導的設計細節描述得極為詳盡,使得讀者能夠清晰地把握從光信號的産生到毫米波射頻輸齣的全過程。這種由微觀器件到宏觀係統層麵的層層遞進,極大地增強瞭可讀性。與其他偏重於純理論推導的專著不同,這本書的案例分析非常貼近工業界的實際需求,例如在超高清晰度視頻迴傳和低延遲遠程操作等場景下的應用潛力被充分挖掘。它不僅是為學術界撰寫的,更是為那些肩負著將實驗室成果轉化為現實生産力的工程師們準備的利器。讀完後,我對“集成”的意義有瞭全新的認識,它不再是簡單的元件集成,而是跨越光電邊界的深度融閤。

評分

這部著作在排版和結構上透露齣一種嚴謹的學術美感,但其內容帶來的震撼遠超形式上的考究。最令人印象深刻的是它對“係統級優化”的深刻理解。作者清晰地指齣瞭,單純追求某一單項性能指標的提升在復雜的實際場景中往往會造成新的不平衡。書中對光電調製器響應速度、毫米波傳輸損耗以及信號處理延遲這三者之間相互製約關係的探討,非常到位。我尤其欣賞其中關於非綫性失真補償策略的部分,它結閤瞭先進的機器學習算法來實時調整光激勵參數,以抵消高頻傳輸中不可避免的非綫性效應,這一章節的深度和廣度,足以支撐一篇博士論文。這種將前沿算法與特定硬件架構深度融閤的敘事方式,使得全書的價值遠超一般綜述類書籍,它更像是一部前沿研究的路綫圖,為所有緻力於推動通信帶寬極限的學者指明瞭方嚮,其對未來標準製定的潛在影響力不容忽視。

評分

這本書的語言風格沉穩而又充滿激情,它成功地將一個極度專業且復雜的交叉學科領域,以一種令人信服的方式呈現齣來。它巧妙地平衡瞭對基礎物理原理的尊重與對工程實用性的強調。其中關於相乾檢測在毫米波光子集成電路中的應用部分,提供瞭多套可供選擇的實現拓撲,並對各自的優缺點進行瞭客觀的比較分析,這種公正的態度在專業書籍中十分難得。更值得稱贊的是,作者並未迴避該技術當前麵臨的製造工藝難題,而是坦誠地討論瞭如何通過先進的封裝技術和材料科學來緩解這些限製。這使得整本書的評價不再是單純的理論贊美,而是一種基於現實考量的技術評估。它為我們提供瞭一個清晰的藍圖,讓我們得以一窺未來十年內,超高速、超大容量無綫接入的可能形態,是這個時代通信領域不可或缺的重量級參考書。

相關圖書

本站所有内容均为互联网搜索引擎提供的公开搜索信息,本站不存储任何数据与内容,任何内容与数据均与本站无关,如有需要请联系相关搜索引擎包括但不限于百度google,bing,sogou

© 2025 book.tinynews.org All Rights Reserved. 静思书屋 版权所有