光子辅助的毫米波通信技术(精)

光子辅助的毫米波通信技术(精) pdf epub mobi txt 电子书 下载 2025

余建军 编
图书标签:
  • 光子毫米波
  • 毫米波通信
  • 光通信
  • 无线通信
  • 高速通信
  • 光子技术
  • 通信工程
  • 信号处理
  • 电磁波
  • 信息技术
想要找书就要到 静思书屋
立刻按 ctrl+D收藏本页
你会得到大惊喜!!
店铺: 土星图书专营店
出版社: 科学
ISBN:9787030561497
商品编码:29679183400
开本:16
出版时间:2018-03-01

具体描述

基本信息

  • 商品名称:光子辅助的毫米波通信技术(精)
  • 作者:余建军
  • 定价:128
  • 出版社:科学
  • ISBN号:9787030561497

其他参考信息(以实物为准)

  • 出版时间:2018-03-01
  • 印刷时间:2018-03-01
  • 版次:1
  • 印次:1
  • 开本:16开
  • 包装:精装
  • 页数:286
  • 字数:360千字

内容提要

余建军著的《光子辅助的毫米波通信技术(精)》 介绍了基于光子辅助的毫米波通信的新技术。主要内 容包括光子辅助的单载波和多载波的矢量毫米波信号 产生技术,利用光纤极化复用、天线极化复用、多波 段复用等多输入多输出技术的宽带毫米波信号传输技 术,以及各种用于提高传输容量和提高接收机性能算 法的、基于外差相干探测的数字信号处理技术。在网 络架构方面介绍了双向全双工毫米波传输和光纤无线 无缝传输,也介绍了在大容量和长距离传输方面的* 新研究成果。本书概括了光子辅助毫米波通信中从系 统到网络的新技术,从原理到应用都有系统而又详细 的介绍。
     本书适合通信领域的工程技术人员,以及高等院 校通信工程等相关专业的研究生和教师阅读。
    

目录


前言
第1章 基于强度调制器的单载波矢量毫米波信号传输系统
1.1 引言
1.2 光子辅助毫米波产生技术
1.3 马赫一曾德尔调制器工作原理
1.4 基于马赫一曾德尔调制器载波抑制方式的矢量信号产生系统
1.4.1 基于外部调制器产生载波抑制的毫米波信号
1.4.2 基于外部调制器产生载波抑制的矢量毫米波信号
1.4.3 理论推导
1.4.4 实验测试
1.5 基于马赫一曾德尔调制器的四倍频毫米波产生技术
1.6 基于单个马赫一曾德尔调制器的偏振复用矢量信号传输系统
1.6.1 原理介绍
1.6.2 实验装置
1.6.3 实验结果
1.7 小结
参考文献
第2章 基于相位调制器的单载波矢量毫米波信号传输系统
2.1 基于相位调制器的光子倍频的矢量毫米波信号生成
2.2 基于相位调制器的随机光子倍频的矢量毫米波信号生成
2.2.1 数值仿真
2.2.2 实验装置
2.2.3 实验结果
2.3 小结
参考文献
第3章 基于直接调制激光器产生SSB和DSB矢量信号
3.1 引言
3.2 原理介绍
3.3 实验装置和实验结果
3.4 小结
参考文献
第4章 高性能的单载波矢量毫米波生成技术
4.1 光载波抑制矢量毫米波中的平衡预编码技术
4.2 相位因子优化的预编码矢量信号系统
4.2.1 原理介绍
4.2.2 实验装置
4.2.3 实验结果
4.3 基于外差拍频和强度调制器的矢量信号产生
4.4 无预编码的光子辅助SSB单偏振毫米波信号产生
4.5 无预编码的光子辅助SSB双偏振毫米波信号产生
4.6 小结
参考文献
第5章 基于预编码的OFDM矢量毫米波信号传输系统
5.1 引言
5.2 载波抑制OFDM矢量信号系统
5.3 偶数阶载波抑制OFDM矢量信号系统
5.3.1 实验装置
5.3.2 实验结果
5.4 奇数阶载波抑制w波段毫米波OFDM矢量信号系统


photonic-assisted millimeter-wave communication technologies (advanced) Introduction The ever-increasing demand for higher data rates and lower latency in wireless communication systems has pushed the boundaries of traditional radio frequency (RF) technologies. Millimeter-wave (mmWave) frequencies, ranging from 30 GHz to 300 GHz, offer vast untapped bandwidth, promising terabit-per-second data rates and enabling a new era of wireless applications such as augmented reality, virtual reality, autonomous driving, and high-definition video streaming. However, mmWave signals suffer from significant path loss, atmospheric attenuation, and blockage by obstacles, posing substantial challenges for reliable and efficient wireless transmission. To overcome these limitations and fully harness the potential of mmWave frequencies, innovative solutions are required. Photonic technologies, with their inherent ability to process signals at extremely high frequencies and with high precision, offer a compelling pathway to augment and enhance mmWave communication systems. This book delves into the cutting-edge realm of photonic-assisted mmWave communication technologies, exploring how the synergistic integration of optics and mmWave electronics can pave the way for next-generation wireless networks. This comprehensive exploration aims to provide a deep understanding of the fundamental principles, enabling technologies, and diverse applications of photonic assistance in mmWave communication. We will meticulously dissect the intricate interplay between optical and electrical domains, highlighting the unique advantages and technical considerations that arise from their integration. The "advanced" designation signifies a thorough and in-depth treatment of the subject matter, suitable for researchers, engineers, and advanced students seeking to grasp the nuances and future trajectory of this rapidly evolving field. Chapter Overview This book is structured to provide a progressive and comprehensive understanding of photonic-assisted mmWave communication. We begin by laying the foundational groundwork, then delve into specific photonic techniques and their integration challenges, and finally explore the diverse applications and future outlook. Part I: Foundations of Millimeter-Wave Communication and Photonic Concepts Chapter 1: The mmWave Spectrum and its Potential: This chapter will introduce the electromagnetic spectrum, with a particular focus on the millimeter-wave bands. We will discuss the inherent advantages of mmWave frequencies, such as vast bandwidth availability, and their implications for achieving ultra-high data rates. The unique propagation characteristics of mmWave signals, including high path loss, atmospheric absorption, and sensitivity to blockage, will be thoroughly examined. Furthermore, we will explore the driving forces behind the adoption of mmWave for future wireless systems, including the limitations of sub-6 GHz bands and the emerging use cases that necessitate higher bandwidths. Chapter 2: Fundamentals of Optical Communication and Photonics: This chapter will provide a concise yet thorough review of the core principles of optical communication. We will cover the generation, transmission, and detection of optical signals, including various light sources (lasers, LEDs), optical fibers, and photodetectors. Essential photonic concepts such as modulation techniques (intensity modulation, phase modulation), multiplexing schemes (WDM, TDM), and signal processing in the optical domain will be introduced. The unique properties of light, including its high frequency, low loss in optical fibers, and inherent parallelism, will be emphasized as key enablers for photonic assistance. Chapter 3: Interfacing Optical and Electrical Domains: A critical aspect of photonic-assisted mmWave communication is the seamless conversion between optical and electrical signals. This chapter will focus on the technologies and challenges associated with this interface. We will discuss various optoelectronic conversion devices, including high-speed photodetectors (e.g., PIN diodes, APDs, UTC-PDs) and electro-optic modulators (e.g., Mach-Zehnder modulators, electro-absorption modulators). The performance limitations of these devices, such as bandwidth, responsivity, noise, and power consumption, will be analyzed in detail. Techniques for optimizing this interface for mmWave frequencies will be explored. Part II: Photonic Techniques for mmWave Communication Enhancement Chapter 4: Photonic Generation of mmWave Signals: Generating stable and spectrally pure mmWave signals directly from electrical sources can be complex and power-hungry. This chapter will explore various photonic techniques for efficient mmWave signal generation. We will discuss heterodyne and homodyne optical mixing, where two optical carriers with a specific frequency difference are mixed to generate mmWave frequencies. Techniques like optical frequency combs and the use of external modulators to imprint mmWave information onto optical carriers will be analyzed. The advantages of photonic generation in terms of spectral purity, tunability, and potential for reconfigurability will be highlighted. Chapter 5: Photonic Beamforming and Antenna Array Control: Beamforming is crucial for overcoming mmWave path loss by directing the signal towards the intended receiver. This chapter will detail how photonic techniques can enable advanced beamforming capabilities for mmWave antenna arrays. We will explore optical phased arrays (OPAs), where the phase of optical signals feeding individual antenna elements is controlled optically, leading to precise and fast beam steering. Techniques for photonic control of RF phase shifters and amplitude controllers for mmWave antenna arrays will be examined. The benefits of photonic beamforming, including reduced hardware complexity, lower power consumption, and increased flexibility, will be discussed. Chapter 6: Photonic Signal Processing for mmWave Systems: Signal processing plays a vital role in modern communication systems, encompassing tasks like equalization, filtering, and modulation/demodulation. This chapter will investigate how photonic signal processing can be leveraged for mmWave applications. We will discuss optical signal processing techniques that can perform complex operations on mmWave signals in the optical domain, potentially offering advantages in speed and efficiency over their electronic counterparts. This includes optical filtering, optical switching, and optical frequency conversion for channel selection and signal manipulation. Chapter 7: Photonic Approaches for mmWave Channel Equalization and Mitigation of Impairments: The challenging propagation environment of mmWave frequencies often necessitates sophisticated channel equalization techniques to combat multipath fading, dispersion, and other impairments. This chapter will explore photonic solutions for addressing these issues. We will analyze how optical signal processing can be used to implement adaptive equalizers, mitigating channel distortions. Furthermore, we will examine photonic techniques for compensating for atmospheric attenuation and improving signal-to-noise ratio (SNR) in mmWave links. Part III: Integration Architectures and Applications Chapter 8: Hybrid Optoelectronic Architectures for mmWave Communication: The integration of photonic and electronic components leads to various hybrid architectures. This chapter will analyze different architectural approaches that combine optical and electronic functionalities for mmWave communication. We will discuss architectures such as radio-over-fiber (RoF) systems, where mmWave signals are transported over optical fiber, and integrated optoelectronic transceivers for mmWave base stations and user equipment. The trade-offs and performance implications of these hybrid designs will be thoroughly evaluated. Chapter 9: mmWave Wireless Backhaul and Fronthaul with Photonic Integration: High-capacity wireless backhaul and fronthaul networks are essential for supporting dense deployments of mmWave small cells and base stations. This chapter will focus on the role of photonic-assisted mmWave technologies in enabling efficient and cost-effective backhaul and fronthaul solutions. We will explore how RoF and other photonic integration techniques can provide the necessary bandwidth and low latency for connecting the radio access network to the core network, facilitating the deployment of future 5G and beyond wireless infrastructure. Chapter 10: mmWave Networks for 5G and Beyond: Photonic Enablement: This chapter will delve into the specific applications and benefits of photonic-assisted mmWave communication within the context of 5G and future wireless generations (e.g., 6G). We will discuss how these technologies can empower enhanced mobile broadband (eMBB), ultra-reliable low-latency communication (URLLC), and massive machine-type communication (mMTC) services. Use cases such as fixed wireless access (FWA), industrial IoT, smart cities, and vehicular communication will be examined in detail, highlighting the unique contributions of photonic assistance. Chapter 11: Advanced Topics and Future Trends: This chapter will explore emerging research frontiers and future trends in photonic-assisted mmWave communication. We will discuss topics such as AI-driven photonic signal processing, reconfigurable photonic devices for mmWave, integration with new materials, and the challenges and opportunities for miniaturization and cost reduction. The long-term vision for photonic-assisted mmWave systems and their potential impact on future wireless ecosystems will be considered. Conclusion This book provides a deep and comprehensive exploration of photonic-assisted mmWave communication technologies. By meticulously detailing the fundamental principles, state-of-the-art techniques, integration challenges, and diverse applications, it aims to equip readers with the knowledge necessary to understand and contribute to this dynamic field. The integration of photonics offers a powerful and elegant solution to unlock the full potential of the vast mmWave spectrum, paving the way for the next generation of ultra-high-speed, low-latency wireless communication systems. The advanced treatment of the subject matter ensures that this book serves as an invaluable resource for researchers, engineers, and students seeking to stay at the forefront of wireless innovation.

用户评价

评分

坦率地说,当我翻开这本书时,最初是抱着一种审慎的怀疑态度的。这个领域的文献汗牛充栋,想要从中提炼出真正有价值、能落地的新东西,难度不亚于沙里淘金。然而,这本书的叙事节奏和逻辑铺陈,却以一种近乎完美的节奏牵引着我的注意力。它没有陷入晦涩的数学公式的泥潭,而是巧妙地将复杂的物理模型转化为直观的工程实现路径。特别是关于超大规模MIMO阵列在毫米波频段的实际部署挑战,书中提出的基于光控相控阵的波束赋形方法,简直是教科书级别的解决方案。它不仅解释了“为什么”当前的技术会遇到瓶颈,更详尽地阐述了“如何”利用光波的特性来优雅地绕过这些限制。书中对于功耗和成本效益的分析,也显示出作者扎实的工程背景,使得理论探讨不至于空中楼阁。对于那些正在进行新一代无线通信系统原型设计的人员来说,这本书无疑是一份不可或缺的实战指南,其提供的不仅仅是理论深度,更是工程实践的智慧结晶。

评分

这本书的语言风格沉稳而又充满激情,它成功地将一个极度专业且复杂的交叉学科领域,以一种令人信服的方式呈现出来。它巧妙地平衡了对基础物理原理的尊重与对工程实用性的强调。其中关于相干检测在毫米波光子集成电路中的应用部分,提供了多套可供选择的实现拓扑,并对各自的优缺点进行了客观的比较分析,这种公正的态度在专业书籍中十分难得。更值得称赞的是,作者并未回避该技术当前面临的制造工艺难题,而是坦诚地讨论了如何通过先进的封装技术和材料科学来缓解这些限制。这使得整本书的评价不再是单纯的理论赞美,而是一种基于现实考量的技术评估。它为我们提供了一个清晰的蓝图,让我们得以一窥未来十年内,超高速、超大容量无线接入的可能形态,是这个时代通信领域不可或缺的重量级参考书。

评分

阅读这本书的过程,更像是一次对“极限思维”的训练。作者挑战了传统电子学思维定势,大胆引入了光子学中的高速、低噪声特性来解决毫米波通信中的能效和带宽瓶颈。书中对新型光电探测器和集成光波导的设计细节描述得极为详尽,使得读者能够清晰地把握从光信号的产生到毫米波射频输出的全过程。这种由微观器件到宏观系统层面的层层递进,极大地增强了可读性。与其他偏重于纯理论推导的专著不同,这本书的案例分析非常贴近工业界的实际需求,例如在超高清晰度视频回传和低延迟远程操作等场景下的应用潜力被充分挖掘。它不仅是为学术界撰写的,更是为那些肩负着将实验室成果转化为现实生产力的工程师们准备的利器。读完后,我对“集成”的意义有了全新的认识,它不再是简单的元件集成,而是跨越光电边界的深度融合。

评分

这部作品的问世,无疑为当前信息通信领域的研究者和工程师们投下了一颗重磅炸弹。它所构建的理论框架,深邃而又极具前瞻性,让人在阅读过程中,仿佛置身于一个前沿科技的迷宫中,每一步探索都伴随着知识的醍醐灌顶。作者没有止步于对现有技术的罗列和修补,而是大胆地将看似毫不相关的两个领域——光子学与毫米波通信——进行了深层次的耦合与重构。书中对高频电磁波传播特性的剖析,细致入微,即便是对该领域有多年经验的专家,也能从中发现新的视角。尤其是在探讨如何利用光子技术在保持信号完整性的同时,突破传统电子器件的带宽瓶颈时,作者展现了惊人的洞察力,一系列创新的调制方案和集成架构被清晰地呈现在我们面前。这种跨学科的融合,绝非简单的技术嫁接,而是对底层物理规律的深刻理解和创新应用,预示着未来无线通信将迈向一个全新的物理层级。阅读完后,我强烈感受到了一种知识的洗礼,它不仅提供了解决当前技术难题的工具,更激发了对未来十年通信技术可能形态的无限遐想。

评分

这部著作在排版和结构上透露出一种严谨的学术美感,但其内容带来的震撼远超形式上的考究。最令人印象深刻的是它对“系统级优化”的深刻理解。作者清晰地指出了,单纯追求某一单项性能指标的提升在复杂的实际场景中往往会造成新的不平衡。书中对光电调制器响应速度、毫米波传输损耗以及信号处理延迟这三者之间相互制约关系的探讨,非常到位。我尤其欣赏其中关于非线性失真补偿策略的部分,它结合了先进的机器学习算法来实时调整光激励参数,以抵消高频传输中不可避免的非线性效应,这一章节的深度和广度,足以支撑一篇博士论文。这种将前沿算法与特定硬件架构深度融合的叙事方式,使得全书的价值远超一般综述类书籍,它更像是一部前沿研究的路线图,为所有致力于推动通信带宽极限的学者指明了方向,其对未来标准制定的潜在影响力不容忽视。

相关图书

本站所有内容均为互联网搜索引擎提供的公开搜索信息,本站不存储任何数据与内容,任何内容与数据均与本站无关,如有需要请联系相关搜索引擎包括但不限于百度google,bing,sogou

© 2025 book.idnshop.cc All Rights Reserved. 静思书屋 版权所有