【正版】Spark快速數據處理 係統講解Spark的數據處理工具及使用方法 為快速編寫高效

【正版】Spark快速數據處理 係統講解Spark的數據處理工具及使用方法 為快速編寫高效 pdf epub mobi txt 電子書 下載 2025

圖書標籤:
  • Spark
  • 大數據
  • 數據處理
  • 數據分析
  • Scala
  • Python
  • 快速開發
  • 高效編程
  • 係統講解
  • 實戰
想要找書就要到 靜思書屋
立刻按 ctrl+D收藏本頁
你會得到大驚喜!!
店鋪: 納卓圖書專營店
ISBN:9787111463115
商品編碼:25972515259
叢書名: Spark快速數據處理
齣版時間:2014-04-01

具體描述

機工 spark快數數據處理
            定價 29.00
齣版社 機械工業齣版社
版次 第1版第1次印刷
齣版時間 2014年05月
開本 大32開
作者 (美)凱洛 著,餘璜 張磊 譯
裝幀 平裝
頁數 114
字數 ---
ISBN編碼 9787111463115

Spark是一個開源的通用並行分布式計算框架,由加州大學伯剋利分校的AMP實驗室開發,支持內存計算、多迭代批量處理、即席查詢、流處理和圖計算等多種範式。Spark內存計算框架適閤各種迭代算法和交互式數據分析,能夠提升大數據處理的實時性和準確性,現已逐漸獲得很多企業的支持,如、百度、網易、英特爾等公司。

本書係統講解Spark的使用方法,包括如何在多種機器上安裝Spark,如何配置一個Spark集群,如何在交互模式下運行個Spark作業,如何在Spark集群上構建一個生産級的脫機/獨立作業,如何與Spark集群建立連接和使用SparkContext,如何創建和保存RDD(彈性分布式數據集),如何用Spark分布式處理數據,如何設置Shark,將Hive查詢集成到你的Spark作業中來,如何測試Spark作業,以及如何提升Spark任務的性能。

譯者序
作者簡介
前言
第1章 安裝Spark以及構建Spark集群
1.1 單機運行Spark
1.2 在EC2上運行Spark
1.3 在ElasticMapReduce上部署Spark
1.4 用Chef(opscode)部署Spark
1.5 在Mesos上部署Spark
1.6 在Yarn上部署Spark
1.7 通過SSH部署集群
1.8 鏈接和參考
1.9 小結
第2章 Sparkshell的使用
2.1 加載一個簡單的text文件
2.2 用Sparkshell運行邏輯迴歸
2.3 交互式地從S3加載數據
2.4 小結
第3章 構建並運行Spark應用
3.1 用sbt構建Spark作業
3.2 用Maven構建Spark作業
3.3 用其他工具構建Spark作業
3.4 小結
第4章 創建SparkContext
4.1 Scala
4.2 Java
4.3 Java和Scala共享的API
4.4 Python
4.5 鏈接和參考
4.6 小結
第5章 加載與保存數據
5.1 RDD
5.2 加載數據到RDD中
5.3 保存數據
5.4 連接和參考
5.5 小結
第6章 操作RDD
6.1 用Scala和Java操作RDD
6.2 用Python操作RDD
6.3 鏈接和參考
6.4 小結
第7章 Shark-Hive和Spark的綜閤運用
7.1 為什麼用HiveShark
7.2 安裝Shark
7.3 運行Shark
7.4 加載數據
7.5 在Spark程序中運行HiveQL查詢
7.6 鏈接和參考
7.7 小結
第8章 測試
8.1 用Java和Scala測試
8.2 用Python測試
8.3 鏈接和參考
8.4 小結
第9章 技巧和竅門
9.1 日誌位置
9.2 並發限製
9.3 內存使用與垃圾迴收
9.4 序列化
9.5 IDE集成環境
9.6 Spark與其他語言
9.7 安全提示
9.8 郵件列錶
9.9 鏈接和參考
9.10 小結

Holden Karau 軟件開發工程師,現就職於Databricks公司,之前曾就職於榖歌、、微軟和Foursquare等公司。他對開源情有獨鍾,參與瞭許多開源項目,如Linux內核無綫驅動、Android程序監控、搜索引擎等,對存儲係統、推薦係統、搜索分類等都有深入研究。

譯者簡介
餘璜 核心係統研發工程師,OceanBase核心開發人員,對分布式係統理論和工程實踐有深刻理解,專注於分布式係統設計、大規模數據處理,樂於分享,在CSDN上分享瞭大量技術文章。

張磊 Spark愛好者,曾參與分布式OLAP數據庫係統核心開發,熱衷於大數據處理、分布式計算。

從實用角度係統講解Spark的數據處理工具及使用方法
手把手教你充分利用Spark提供的各種功能,快速編寫高效分布式程序 

第1章 安裝Spark以及構建
Spark集群
1.1 單機運行Spark
1.2 在EC2上運行Spark
1.3 在ElasticMapReduce上部署Spark
1.4 用Chef(opscode)部署Spark
1.5 在Mesos上部署Spark
1.6 在Yarn上部署Spark
1.7 通過SSH部署集群
1.8 鏈接和參考
1.9 小結
本章將詳細介紹搭建Spark的常用方法。Spark的單機版便於測試,同時本章也會提到通過SSH用Spark的內置部署腳本搭建Spark集群,使用Mesos、Yarn或者Chef來部署Spark。對於Spark在雲環境中的部署,本章將介紹在EC2(基本環境和EC2MR)上的部署。如果你的機器或者集群中已經部署瞭Spark,可以跳過本章直接開始使用Spark編程。
不管如何部署Spark,首先得獲得Spark的一個版本,截止到寫本書時,Spark的版本為0.7版。對於熟悉github的程序員,則可以從git://github.com/mesos/spark.git直接復製Spark項目。Spark提供基本源碼壓縮包,同時也提供已經編譯好的壓縮包。為瞭和Hadoop分布式文件係統(HDFS)交互,需要在編譯源碼前設定相應的集群中所使用的Hadoop版本。對於0.7版本的Spark,已經編譯好的壓縮包依賴的是1.0.4版本的Hadoop。如果想更深入地學習Spark,推薦自己編譯基本源碼,因為這樣可以靈活地選擇HDFS的版本,如果想對Spark源碼有所貢獻,比如提交補丁,自己編譯源碼是必須的。你需要安裝閤適版本的Scala和與之對應的JDK版本。對於Spark的0.7.1版本,需要Scala 2.9.2或者更高的Scala 2.9版本(如2.9.3版)。在寫本書時,Linux發行版Ubuntu的LTS版本已經有Scala 2.9.1版,除此之外,近的穩定版本已經有2.9.2版。Fedora 18已經有2.9.2版。Scala官網上的版在選擇Spark支持的Scala版本十分重要,Spark對Scala的版本很敏感。.........


用戶評價

評分

評分

評分

評分

評分

評分

評分

評分

評分

相關圖書

本站所有内容均为互联网搜索引擎提供的公开搜索信息,本站不存储任何数据与内容,任何内容与数据均与本站无关,如有需要请联系相关搜索引擎包括但不限于百度google,bing,sogou

© 2025 book.tinynews.org All Rights Reserved. 静思书屋 版权所有