书名:白话统计
定价:69.00元
售价:48.3元,便宜20.7元,折扣70
作者:冯国双
出版社:电子工业出版社
出版日期:2018-01-01
ISBN:9787121335181
字数:
页码:
版次:1
装帧:平装-胶订
开本:16开
商品重量:0.4kg
一本能让人看明白的“白话”统计书 ,一本提供数据分析思路而非公式的统计书
行家张文彤博士带头点赞
涉及Excel、SPSS、R、SAS、JMP等常用工具软件
冯国双博士另著有《小白学SAS一书》
一本书如果没有作者自己的观点,而只是知识的堆叠,那么这类书是没有太大价值的。尤其在当前网络发达的时代,几乎任何概念和知识点都可以从网络上查到。但是有一点你很难查到,那就是统计分析的思路和观点。比如,你可以很容易地在网上查到什么是线性回归,但你却查不到怎么“做”线性回归分析,在你遇到实际数据时仍然不知道如何分析。在《白话统计》中,你可以获得这些思路和观点。尽管这些观点未必是所有人都认可的,但根据笔者多年的分析经验,它们在实践中通常是奏效的。《白话统计》凝结了作者十多年来对统计分析的理解,对各种方法的介绍采用全新的理念和思路,不再是介绍方法本身,而是试图将各种方法之间的联系阐述清楚;不再是介绍方法如何计算出结果,而是尽量说明方法背后的思想。当然,本书同时提供了如何实现结果的软件(涉及Excel、SAS、R、JMP、SPSS 等)操作。
目 录
第 1 篇 基础篇
章 为什么要学统计 2
1.1 统计学有什么用 3
1.2 生活世事皆统计 4
1.3 如何学统计 4
第 2 章 变异——统计学存在的基础 6
2.1 与变异 6
2.2 特朗普与罗斯福的胜出——抽样调查到底可不可靠 8
2.3 什么是抽样误差 9
第 3 章 郭靖的内力能支撑多久——谈概率分布 11
3.1 累积分布与概率密度的通俗理解 12
3.2 是生存还是死亡?这是一个问题——用Weibull 分布寻找生存规律 16
3.3 2003 年的那场SARS——用Logistic 分布探索疾病流行规律 20
3.4 “普通”的正态分布 23
3.5 几个常用分布——t 分布、χ2 分布、F 分布 28
第 4 章 关于统计资料类型的思考 35
4.1 计数资料等于分类资料吗 36
4.2 计数资料可否采用连续资料的方法进行分析 37
4.3 分类资料中的无序和有序是如何确定的 38
4.4 连续资料什么时候需要转换为分类资料 39
4.5 连续资料如何分组——寻找cut-off 值的多种方法 41
4.6 什么是虚拟变量/哑变量 47
第 5 章 如何正确展示你的数据 52
5.1 均数和中位数——你被平均了吗 53
5.2 方差与标准差——变异的度量 54
5.3 自由度——你有多少自由活动的范围 56
5.4 百分位数——利用百分数度量相对位置 57
5.5 如何比较苹果和橘子——利用Z 值度量相对位置 59
5.6 某百岁老人调查报告说:少运动才能活得久——谈一下比例和率 61
5.7 在文章中如何正确展示百分比 63
第 6 章 寻找失踪的运动员——中心极限定理 64
6.1 中心极限定理针对的是样本统计量而非原始数据 65
6.2 样本量大于30 就可以认为是正态分布了吗 67
第 7 章 从“女士品茶”中领会假设检验的思想 70
7.1 女士品茶的故事 70
7.2 零假设和备择假设 . 72
7.3 假设检验中的两类错误 73
7.4 P 值的含义 76
7.5 为什么P 值小于0.05(而不是0.02)才算有统计学意义 78
7.6 为什么零假设要设定两组相等而不是两组不等 79
第 8 章 参数估计——一叶落而知秋 81
8.1 点估计 .81
8.2 小二乘估计 82
8.3 大似然估计 84
8.4 贝叶斯估计 86
第 9 章 置信区间估计——给估计留点余地 88
9.1 置信区间的理论与实际含义 88
9.2 置信区间与P 值的关系 90
9.3 利用标准误计算置信区间 91
9.4 利用Bootstrap 法估计置信区间 . 92
第 2 篇 实用篇
0 章 常用统计方法大串讲 98
10.1 一般线性模型——方差分析与线性回归的统一 99
10.2 广义线性模型——线性回归与Logistic 回归的统一 103
10.3 广义可加模型——脱离“线性”束缚 107
10.4 多水平模型——打破“独立”条件 112
10.5 结构方程模型——从单因单果到多因多果 119
第 11 章 正态性与方差齐性 .127
11.1 用统计检验方法判断正态性 127
11.2 用描述的方法判断正态性 130
11.3 方差分析中的方差齐性判断 .133
11.4 理解线性回归中的方差齐性 135
第 12 章 t 检验——不仅是两组比较 .138
12.1 从另一个角度来理解t 检验 138
12.2 如何正确应用t 检验 140
12.3 t 检验用于回归系数的检验 141
12.4 t 检验的替代——Wilcoxon 秩和检验 142
第 13 章 方差分析与变异分解 145
13.1 方差分析中变异分解的思想 145
13.2 为什么回归分析中也有方差分析 147
13.3 铁打的方差分析,流水的实验设计 148
13.4 方差分析后为什么要进行两两比较 152
13.5 多重比较方法的选择建议 154
13.6 所有的多组都需要做两两比较吗——兼谈固定效应和效应 164
13.7 重复测量方差分析详解 166
13.8 方差分析的替代——Kruskal-Wallis 秩和检验 176
13.9 多组秩和检验后的两两比较方法 178
第 14 章 卡方检验——有“卡”未必走遍天下 181
14.1 卡方检验用于分类资料组间比较的思想 181
14.2 卡方用于拟合优度评价——从Hardy-Weinberg 定律谈起 184
14.3 似然比χ2、M-H χ2、校正χ2 与Fisher 检验 186
14.4 等级资料到底可不可以用卡方检验 191
14.5 卡方检验的两两比较 193
14.6 Cochran-Armitage 趋势检验 194
14.7 分类变量的赋值是如何影响分析结果的 196
第 15 章 相关分析与一致性检验 200
15.1 从协方差到线性相关系数 200
15.2 线性相关系数及其置信区间 203
15.3 如何比较两个线性相关系数有无差异 206
15.4 分类资料的相关系数 207
15.5 基于秩次的相关系数 210
15.6 相关分析中的几个陷阱 213
15.7 用ICC 和CCC 指标判断一致性 215
15.8 用Bland-Altman 图判断一致性 218
15.9 Kappa 检验在一致性分析中的应用 219
第 16 章 线性回归及其分析思路 .222
16.1 残差——识别回归模型好坏的关键 223
16.2 回归系数的正确理解 226
16.3 回归系数检验VS 模型检验 227
16.4 均值的置信区间VS 个体的预测区间 228
16.5 逐步回归筛选变量到底可不可靠——谈变量筛选策略 230
16.6 如何评价模型是好还是坏——交叉验证思路 237
16.7 线性回归的应用条件——你的数据能用线性回归吗 240
16.8 如何处理非正态——Box-Cox 变换 247
16.9 如何处理非线性——Box-Tidwell 变换 248
16.10 方差不齐怎么办——加权小二乘法 250
16.11 当共线性导致结果异常时怎么办——岭回归、Lasso 回归 .254
16.12 发现异常值应该删除吗——谈几种处理异常值的方法 .260
16.13 如何处理缺失值——是删除还是填补 268
16.14 一个非教材的非典型案例——线性回归的综合分析 276
冯国双,北京大学医学部博士,具有十多年的数据统计分析经验,知名统计学平台“小白学统计”的创始者与维护者。已主编多部统计学专著,出版《小白学SAS》,同时兼任多个与统计有关的学术委员会委员。兴趣爱好:在热爱统计分析之余,还对古玩奇石、盆景制作和诗词鉴赏略有心得。
这本书在结构上的设计也体现了作者的匠心独运。它不是按照传统统计教材那种“描述性统计先行,推断性统计收尾”的刻板流程走的,而是更注重知识点的内在联系和实际应用场景的串联。我特别欣赏它对“数据思维”的强调,而不是仅仅停留在计算层面。比如,在讲到回归分析时,它没有急于展示复杂的最小二乘法推导,而是先花了大篇幅讨论如何正确地提出一个可以被量化的研究问题,以及如何识别和避免常见的混淆变量。这让我意识到,统计学真正的价值在于指导我们如何更科学地观察世界,而不是单纯地跑出一个数字。书中的章节安排很自然,从基础的数据清洗和可视化,到逐步深入到更高级的模型构建和评估,每一步都衔绕紧密,读起来一气呵成,不会产生“知识断层”的困惑。它更像是一份精心制作的“探险地图”,指引着读者一步步揭开数据背后的秘密,而不是一堆零散的工具说明书。
评分这本书的叙述风格简直是教科书界的清流!它完全没有那种冷冰冰的理论堆砌感,而是像一个经验丰富的老教授,慢条斯理地在你耳边讲解那些曾经让你头疼的统计概念。我记得我以前翻阅其他统计书籍时,常常被那些密密麻麻的公式和符号搞得晕头转向,感觉自己像在啃一块硬邦邦的石头。但是读了这本,那种感觉彻底消失了。作者似乎深谙普通读者的“痛点”,总能在关键的地方插入一些生活化的例子,比如用掷骰子来解释概率分布,或者用市场调查的数据来阐述假设检验的逻辑。尤其是对P值的解释部分,我以前一直把它理解得非常模糊,但这本书里通过一个非常形象的场景,让我瞬间茅塞顿开。它不是简单地告诉你“P值小于0.05就拒绝原假设”,而是告诉你为什么这么做,背后的思维逻辑是什么。这种深入浅出的讲解,让统计学不再是一门高不可攀的学科,而变成了一门可以被掌握的实用工具。对我这种非专业背景的人来说,这简直是福音,感觉自己终于可以和那些“统计精英”进行正常的对话了。
评分不得不提的是,这本书的排版和视觉呈现非常出色,极大地提升了阅读体验。要知道,统计类的书籍,内容本身已经够烧脑了,如果再配上那种黑白灰、密密麻麻的小字,那简直是双重折磨。然而,这本书在图表的运用上非常大胆和有效。它没有滥用那些花哨的、与内容无关的装饰性图片,而是每一个图表都紧密服务于理论的阐述。例如,在解释方差分析(ANOVA)时,它使用的图形不仅清晰地展示了组间差异和组内波动,而且通过不同的颜色和标记,让人一眼就能抓住核心要点。很多地方的留白处理得恰到好处,让读者的大脑有时间去消化刚刚学到的概念,而不是被信息流快速地冲刷过去。这种对用户体验的关注,让我想起那些顶级的科技产品设计,它们深知“形式服务于功能”的道理。对于我这种需要反复查阅和回顾的读者来说,清晰的结构和直观的图示是保证学习效率的关键,这本书在这方面做得无可挑剔。
评分与我之前读过的几本经典的统计教材相比,这本书的语言风格简直是反其道而行之,却达到了更好的效果。那些经典教材往往追求严谨的数学语言,每一个词语都必须精确到小数点后多少位,这固然专业,但也设置了极高的门槛。而这本书的作者似乎抱着一种“我就是要让你明白”的真诚态度在写作。他的语气非常亲切,时常会使用一些反问句或者带有幽默感的比喻来引导读者的思路,让整个阅读过程像是一场轻松愉快的智力对话,而不是一场紧张的考试。比如,在解释中心极限定理时,他没有直接扔出那个复杂的数学公式,而是先描绘了一个人们在面对随机事件时心理预期的变化过程,然后自然而然地引出了那个定理的必然性。这种“讲故事”的能力,是很多技术类书籍所欠缺的,也正因为如此,我才能在短时间内建立起对统计学概念的直觉性理解,这是任何公式推导都难以替代的。
评分这本书最让我感到惊喜的是它对于统计伦理和局限性的讨论。很多同类书籍往往只是一味地推崇统计方法的强大和精确性,仿佛只要用了正确的统计方法,就能得出绝对真理。但这本书却用非常审慎的态度,提醒读者,统计学永远是基于不完全信息的推断,它有着内在的局限性,并且很容易被不当使用。书中专门开辟了一小节,详细讨论了如何避免“数据挖掘导致的假阳性”以及如何诚实地报告模型的不足之处。这种“负责任的统计实践”的理念,对于我们现在这个信息爆炸、数据滥用的时代尤为重要。它让我从一个单纯追求“会算”的执行者,转变成了一个更具批判性思维的观察者,开始思考“我是否应该用这个方法”,而不是仅仅“我能不能用这个方法”。这种深层次的引导,比教导任何一种具体的算法都更有价值。
本站所有内容均为互联网搜索引擎提供的公开搜索信息,本站不存储任何数据与内容,任何内容与数据均与本站无关,如有需要请联系相关搜索引擎包括但不限于百度,google,bing,sogou 等
© 2025 book.idnshop.cc All Rights Reserved. 静思书屋 版权所有