Simon Haykin,於1953年獲得英國伯明翰大學博士學位,目前為加拿大McMaster大學電子與計算機工程係教授、通信研究實驗室主任。他是國際電子電氣工程界的著名學者,曾獲得IEEE McNaughton金奬。他是加拿大皇傢學會院士、IEEE會士,在神經網絡、通信、自適應濾波器等領域成果頗豐,著有多部標準教材。
《神經網絡與機器學習(英文版第3版)》的可讀性非常強,作者舉重若輕地對神經網絡的基本模型和主要學習理論進行瞭深入探討和分析,通過大量的試驗報告、例題和習題來幫助讀者更好地學習神經網絡。神經網絡是計算智能和機器學習的重要分支,在諸多領域都取得瞭很大的成功。在眾多神經網絡著作中,影響最為廣泛的是SimonHaykin的《神經網絡原理》(第4版更名為《神經網絡與機器學習》)。在《神經網絡與機器學習(英文版第3版)》中,作者結閤近年來神經網絡和機器學習的最新進展,從理論和實際應用齣發,全麵。係統地介紹瞭神經網絡的基本模型、方法和技術,並將神經網絡和機器學習有機地結閤在一起。《神經網絡與機器學習(英文版第3版)》不但注重對數學分析方法和理論的探討,而且也非常關注神經網絡在模式識彆、信號處理以及控製係統等實際工程問題中的應用。
本版在前一版的基礎上進行瞭廣泛修訂,提供瞭神經網絡和機器學習這兩個越來越重要的學科的最新分析。
##這次是第一次通讀瞭整本書,裏麵的很多數學公司推導、部分原理沒看明白,我想大部分第一次讀的人應該也和我差不多吧。 如果作為學習神經網絡的入門書,我想這本可能不太適閤,因為它太多太細,初學者很容易陷入細節受到挫敗感。 但並不是說這本書不好,相反,這本書絕對是經典...
評分##基礎的東西講的很深,但是沒有最新的東西
評分 評分##原書:Neural Networks and Learning Machines 土豪,注意,這是 Learning Machines, 而不是 Machine Learning 神經網絡與學習機會更好。
評分##是很全麵的機器學習理論書籍,不過大多數讀者是看不明白的,翻譯也很一般。 p92 三個標準化步驟的結果,消除均值、去相關性以及協方差均衡 是很全麵的機器學習理論書籍。 p94 對於神經元,訓練率應該與突觸數量成反比。 p92 三個標準化步驟的結果,消除均值、去相關性以及協方...
評分##總體說來還行把
評分##非常難讀的一本書,質量還行
評分 評分本站所有内容均为互联网搜索引擎提供的公开搜索信息,本站不存储任何数据与内容,任何内容与数据均与本站无关,如有需要请联系相关搜索引擎包括但不限于百度,google,bing,sogou 等
© 2025 book.tinynews.org All Rights Reserved. 静思书屋 版权所有