教学经典教材:有限元(第3版) [Finite Elements:Theory,Fast Solvers,and Application in Solid Mechanics]

教学经典教材:有限元(第3版) [Finite Elements:Theory,Fast Solvers,and Application in Solid Mechanics] pdf epub mobi txt 电子书 下载 2025

[德] 布拉文斯(Braess D.) 著
想要找书就要到 静思书屋
立刻按 ctrl+D收藏本页
你会得到大惊喜!!
出版社: 世界图书出版公司
ISBN:9787510042850
版次:3
商品编码:11004217
包装:平装
外文名称:Finite Elements:Theory,Fast Solvers,and Application in Solid Mechanics
开本:24开
出版时间:2012-03-01
用纸:胶版纸
页数:365###

具体描述

内容简介

This definitive introduction to finite element methods has been thoroughly updated for this third edition, which features important new material for both research and application of the finite element method.
The discussion of saddle point problems is a lughlight of the book and has been elaborated to include many more nonstandard applications. The chapter on applications in elasticity now contains a complete discussion of locking phenomena.
The numerical solution ofelliptic partial differential equations is an important application of finite elements and the author discusses this subject comprehensively. These equations are treated as variational problems for which the Sobolev spaces are the right framework. Graduate students who do not necessarily have any particular background in differential equations but require an introduction to finite element methods will find this text invaluable. Specifically, the chapter on finite elements in solid mechanics provides a bridge between mathematics and engineering.

内页插图

目录

Preface to the Third English Edition
Preface to the First English Edition
Preface to the German Edition
Notation
Chapter Ⅰ Introduction
1. Examples and Classification of PDE's
Examples
Classification of PDE's
Well-posed problems
Problems
2. The Maximum Ptinciple
Examples
Corollaries
Problem
3. Finite Difference Methods
Discretization
Discrete maximum principle
Problem
4. A Convergence Theory for Difference Methods
Consistency
Local and global error
Limits of the con-vergence theory
Ptoblems

Chapter Ⅱ Conforming Finite Elements
1. Sobolev Spaces
Introduction to Sobolev spaces
Friedrichs' inequality
Possible singularities of H1 functions
Compact imbeddings
Problems
2. Variational Formulation of Elliptic Boundary-Value Problems of Second Order
Variational formulation
Reduction to homogeneous bound- ary conditions
Existence of solutions
Inhomogeneous boundary conditions
Problems
3. The Neumann Boundary-Value Problem. A Trace Theorem
Ellipticity in H
Boundary-value problems with natural bound-ary conditions
Neumann boundary conditions
Mixed boundary conditions
Proof of the trace theorem
Practi- cal consequences of the trace theorem
Problems
4. The Ritz-Galerkin Method and Some Finite Elements
Model problem
Problems
5. Some Standard Finite Elements
Requirements on the meshes
Significance of the differentia-bility properties
Triangular elements with complete polyno-mials
Remarks on Cl elements
Bilinear elements
Quadratic rectangular elements
Affine families
Choiceof an element
Problems
6. Approximation Properties
The Bramble-Hilbert lemma
Triangular elements with com-plete polynomials
Bilinear quadrilateral elements
In-verse estimates
Clement's interpolation
Appendix: On the optimality of the estimates
Problems
7. Error Bounds for Elliptic Problems of Second Order
Remarks on regularity
Error bounds in the energy normL2 estimates
A simple Loo estimate
The L2-projector
Problems
8. Computational Considerations
Assembling the stiffness matrix
Static condensation
Complexity of setting up the matrix
Effect on the choice of a grid
Local mesh refinement
Implementation of the Neumann boundary-value problem
Problems

Chapter Ⅲ Nonconforming and Other Methods
1. Abstract Lemmas and a Simple Boundary Approximation Generalizations of Cea's lemma
Duality methods
The Crouzeix-Raviart element
A simple approximation to curved boundaries
Modifications of the duality argument
Problems
2. Isoparametric Elements
Isoparametric triangular elements
Isoparametric quadrilateral elements
Problems
3. Further Tools from Functional Analysis
Negative norms
Adjoint operators
An abstract exis- tence theorem
An abstract convergence theorem
Proof of Theorem 3.4
Problems
4. Saddle Point Problems
Saddle points and minima
The inf-sup condition
Mixed finite element methods
Fortin interpolation
……
Chapter Ⅳ The Conjugate Gradient Method
Chapter Ⅴ Multigrid Methods
Chapter Ⅵ Finite Elements in Solid Mechanics

前言/序言



用户评价

评分

英语书籍,定价49:00元,有点偏高。专业性很强的书籍,适合计算数学有限元方向的读者学习。可以当作研究生教材

评分

This definitive introduction to finite element methods has been thoroughly updated for this third edition, which features important new material for both research and application of the finite element method.

评分

Goooooooooooooooooooooooooooood

评分

计算等效节点力

评分

没看呢呵呵

评分

有限元法(FEA,Finite Element Analysis)的基本概念是用较简单的问题代替复有限元分析(FEA,Finite Element Analysis)利用数学近似的方法对真实物理系统(几何和载荷工况)进行模拟。还利用简单而又相互作用的元素,即单元,就可以用有限数量的未知量去逼近无限未知量的真实系统。杂问题后再求解。它将求解域看成是由许多称为有限元的小的互连子域组成,对每一单元假定一个合适的(较简单的)近似解,然后推导求解这个域总的满足条件(如结构的平衡条件),从而得到问题的解。这个解不是准确解,而是近似解,因为实际问题被较简单的问题所代替。由于大多数实际问题难以得到准确解,而有限元不仅计算精度高,而且能适应各种复杂形状,因而成为行之有效的工程分析手段。选择位移模式

评分

物体离散化后,假定力是通过节点从一个单元传递到另一个单元。但是,对于实际的连续体,力是从单元的公共边传递到另一个单元中去的。因而,这种作用在单元边界上的表面力、体积力和集中力都需要等效的移到节点上去,也就是用等效的节点力来代替所有作用在单元上的力。

评分

没看呢呵呵

评分

不错,慢慢学习

相关图书

本站所有内容均为互联网搜索引擎提供的公开搜索信息,本站不存储任何数据与内容,任何内容与数据均与本站无关,如有需要请联系相关搜索引擎包括但不限于百度google,bing,sogou

© 2025 book.idnshop.cc All Rights Reserved. 静思书屋 版权所有